
Chapter 1

Introduction to Proofs

1.1 Preview of Proof

This section previews many of the key ideas of proof and cites [in brackets] the
sections where they are discussed thoroughly. All of these ideas are discussed
at much greater length throughout the text.

Definition 1. A proof of a theorem is a sequence of statements which demon-
strates that the theorem is a logical consequence of prior results [Sections 3.1
and 3.3]. Prior results are results already known to be true prior to the theorem.
A proof arranges selected prior results so that the theorem follows logically from
them.

This first example illustrates how prior results and logic combine to make a
proof.

Example 1: Suppose we have as prior results these two rules of algebra:
Uniqueness of Addition Rule: a = b if and only if a + c = b + c.
The Zero Product Rule: ab = 0 if and only if a = 0 or b = 0.

Theorem: (x− a)(x− b) = 0 iff x = a or x = b. [iff abbreviates if and only if ]

Proof:
(x− a)(x− b) = 0 iff x− a = 0 or x− b = 0 by the Zero Product Rule.
x− a = 0 or x− b = 0 iff x = a or x = b by Uniqueness of Addition,

twice.
Therefore, (x− a)(x− b) = 0 iff x = a or x = b. !

This is a proof because the component statements are prior results and the
desired conclusion follows logically [Section 1.6].

This proof has the logical form

A iff B [a prior result] and
B iff C [another prior result]

implies A iff C [by logic]
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The first two steps are prior results and the third step follows logically from
them because the form [Section 1.3] is the tautology [Section 1.6] known as
transitivity of the logical connective iff : [(A iff B) and (B iff C)] ⇒ (A iff C).

!

Placeholders. The prior results used in Example 1 are stated with placeholders
which permit switching letters [Section 2.1]. The letters used in the steps are
not the same as the letters used in the cited rule. For example, in the place
where Step 1 has

(x− a)(x− b) = 0

the rule has ab = 0.
Nevertheless, the rule applies because ab represents any product, and in

the theorem (x − a)(x − b) is a product. In the rule the letters a and b are
placeholders.

Definition 2. A variable (usually a letter) is a placeholder (also known as a
dummy variable) when it is used to hold the place of any expression of its kind
(for example, any number or numerical expression), as opposed to representing
a particular number. (Definition 15 of quantifiers is relevant.)

Translation. It is common for theorems to be stated using terms that have
been recently defined. Then the terms are translated, using their definitions,
and the work is done with the translated version [Figure 2.3.4 and Sections 1.2
and 4.1].

For example, the next theorem could be in a section on set theory shortly
after the terms subset and complement were defined [Sections 1.2, 4.1]. In the
proof, sentences with those terms are replaced, that is, translated, using their
definitions, by equivalent sentences given in terms that are more primitive.

Definition 3. Two sentences with the same variable are equivalent if and only
if they are true for the same values of the variable and false for the same values
of the variable. That is, they are true or false together.

Equivalence can be expressed with the connective if and only if (abbreviated
iff) or symbolized by a double arrow, ⇔, or just written out “is equivalent to”.

Example 2: 2x = 10 is equivalent to x = 5. Both are true when x = 5. Both
are false when x $= 5.

ab = 0 is equivalent to a = 0 or b = 0. !

Example 3: Suppose we are studying sets and we have the definitions of subset
and complement as prior results:
Notation for member : x ∈ S is a notation for “x is a member of S.”
Definition of subset : S is a subset of T if and only if (if x ∈ S, then x ∈ T ).
Notation for subset : S ⊂ T is a notation for “S is a subset of T .”
Definition of complement : x ∈ Sc if and only if x /∈ S (and x ∈ U , the universal
set).
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Each definition gives a pair of equivalent sentences. By definition of subset,
“S is a subset of T” is equivalent to “if x ∈ S, then x ∈ T ,” and both are
equivalent to “S ⊂ T” by definition of the notation.

With these prior results we can prove:
Theorem: S ⊂ T if and only if T c ⊂ Sc.

Proof:
[Step 1] S ⊂ T iff x ∈ S ⇒ x ∈ T by definition of subset
[Step 2] iff x /∈ T ⇒ x /∈ S by contrapositive [logic, Theorem 1.4.2]
[Step 3] iff x ∈ T c ⇒ x ∈ Sc by definition of complement, twice
[Step 4] iff T c ⊂ Sc by definition of subset. "

The reader is expected to realize that, by transitivity of the logical connective
iff, the first sentence is equivalent to the last, so the proof is complete.

This proof used
definitions: in Steps 1, 3 and 4 [Section 2.3]
notations: (notations such as ⊂ and /∈ are defined as abbreviations)
logic: the contrapositive, in Step 2, and the overall logic

[Sections 1.3-1.6]
letter-switching : in Step 3, where the complement of T is used even though

the definition uses S, and in Step 4, where the definition
of subset is used with T c in place of S.) [Section 2.1]

!

Prior Results on the List. A proof is a sequence of sentences (steps). To
prove any given result, the steps must be results prior to it.

Definition 4. We imagine mathematical results to be in sequence on a list, one
after another [Section 3.3]. For the proof of any given assertion, prior results
consist of

1) axioms (These are rare. We mention one below as Axiom 12.)
2) definitions (Definitions include notations. Definitions are abbreviations),

or
3) proven results that are on the list prior to the given assertion.

The proof in Example 3 is a proof because the logic is correct [Sections 1.3-
1.6] and each step is a result prior to the theorem.

Logic. Logic concerns truth and falsehood. The truth of a compound sentence
depends upon the truth of its component sentences and the arrangement of its
logical connectives [Sections 1.3-1.6].

Definition 5. There are five basic logical connectives:
1) not (sometimes symbolized by ∼ or ¬. We spell out not.)
2) and (sometimes symbolized by ∧)
3) or (sometimes symbolized by ∨. We spell out or.)
4) if . . . , then . . . (⇒)
5) if and only if (⇔)
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Definition 6. Sentences with the connective if . . . , then . . . are called con-
ditional sentences.

Example 4: Here is an assertion: “If x > 5, then x2 > 25.” The assertion
uses the connective if . . . , then . . . to make a compound sentence from the two
component sentences “x > 5” and “x2 > 25.” It is a conditional sentence. The
assertion is true. For all x > 5, x2 > 25. !

Sentences with the connective if . . . , then . . . and a variable are interpreted
as generalizations.

Definition 7. A generalization is a declarative sentence that asserts, explic-
itly or implicity, that something is always true [Section 2.1].

Example 4: continued: The sentence “If x > 5, then x2 > 25” is a generaliza-
tion. It is true for all x. The “for all” wording is suppressed, but understood.
It is equivalent to “For all x > 5, x2 > 25.” It is also equivalent to “For all x,
if x > 5, then x2 > 25.” !

Example 5: x2 ≥ 0. This is true for all x and is interpreted that way even if
the phrase “for all x” is omitted. !

Example 6: The sentence “For all x, 2(x + 1) = 2x + 2,” is a generalization. It
is true. It is often abbreviated by leaving off the “For all x” part: “2(x + 1) =
2x + 2.” The reader is supposed to recognize that the equation is true for each
x. !

Definition 8. An equation with a variable which is true for all values of the
variable is called an identity.

Example 6: continued: The equation“2(x + 1) = 2x + 2” is an identity. When
we attach “for all x” to it (explicitly or implicitly) it becomes a generalization.

!
An identity is an equation with a variable such that the equation is always

true (that is, for all values of the variable). A generalization is an assertion that
something is always true. The assertion could be wrong and the generalization
false.

Example 7: Resolve the conjecture: x2 ≥ x, for all x. (This might be written,
“x2 ≥ x,” without the “for all x” part.) This conjecture is a generalization.

Definition 9. In this text the word conjecture is a synonym for statement,
but without any connotation of truth or falsehood. To resolve a conjecture
means to decide if it is true or false, and to prove it if it is true or disprove it
if it is false.

The conjecture in Example 7 is false because there is a counterexample,
x = 1

2 The statement “( 1
2 )2 ≥ 1

2” is false, so the generalization is false. !
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Definition 10. A counterexample to a generalization is an example that
demonstrates that the generalization is false by showing that the component as-
sertion is not always true.

Any one counterexample proves that a generalization is false (i.e., disproves
the generalization) [Section 2.2].

To prove a generalization false, we prove its negation true. The negation of
a generalization is an existence statement [Section 2.2]. This is an axiom.

Definition 11. An axiom is a statement that is accepted without proof.

Usually axioms are accepted because they are “obvious” or so primitive that
there are no relevant results prior to them.

Axiom 12. Let P (x) be an assertion with truth value that may depend upon x.
The negation of the generalization, “For all x, P (x),” is
the existence statement, “There exists an x such that (not P (x)).”

Therefore the generalization, “For all x, P (x),” is false if and only if the
existence statement, “There exists an x such that (not P (x)),” is true.

Example 7: continued: “For all x, x2 ≥ x,” is a false generalization because
“There exists x such that x2 < x,” is a true existence statement.

x = 1
2 is an example that proves this. This example is a counterexample to the

conjecture in Example 7. It proves that “x2 ≥ x” is false. !

Definition 13. A statement that (explicitly or implicitly) asserts that something
exists is an existence statement [Section 2.2].

Theorem 14. 1 A counterexample to a generalization of the form “If H,
then C,” is an example such that the hypothesis, H, is true and the conclusion,
C, is false.

Example 8: Resolve the conjecture: If x2 > 25, then x > 5.
The conjecture is false; there is a counterexample: x = −10.
When x = −10, x2 = 100 and the hypothesis is true. However, −10 is not

greater than 5, so the conclusion is false.
Actually, there are many different possible counterexamples. x = −6 is

another. But it is good style to just pick one counterexample, as simple as
possible. One counterexample is enough to prove that a generalization is false.

!
1The theorems and definitions that you need to know are numbered in bold print in a

single sequence. So, “Theorem 14” does not mean it is the fourteenth theorem, rather it is
the fourteenth major result of the section. This should make important results easy to locate.
When a theorem is cited in a later section, it will be prefixed with the section number, so
“1.1.14” refers to the fourteenth major result in bold in Section 1.1. Examples are numbered
in their own, separate, underlined sequence.
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Definition 15. There are two quantifiers, for all and there exists, used to
quantify variables in generalizations and existence statements. Frequently the
quantifier is not given in exactly those words, rather it is understood, or ex-
pressed by a synonym. The phrase for each is a good synonym for for all
[Section 2.1]. Quantified variables are placeholders.

Example 9: The sentence, “The equation x2 = 5x − 6 has a solution,” is an
existence statement. It asserts that there exists a solution. Not all existence
statements use the exact phrase there exists. The existence statement is true;
x = 2 is an example which proves it. (The left side would be 22 = 4 and the right
side would be 5(2)−6 = 4, also.) The existence statement could be proved with
a different example, x = 3, but one example is enough for an existence proof.

!

Logical Form. Many proofs use logic to reorganize the original statement
into an equivalent statement that is more convenient. Often proofs combine
translation [Section 2.4] and logical reorganization [Sections 1.4 and 1.5].

Example 10: Suppose you are studying sets and you have, as prior results, the
definitions of ⊂ (subset), ∩ (intersection), and = (equals). (Yes, even “=” has
a definition!) [Sections 1.2 and 2.3.]
Definition of subset (from Example 2): S ⊂ T if and only if (if x ∈ S, then
x ∈ T ).
Definition of set intersection (∩): x ∈ S ∩ T if and only if x ∈ S and x ∈ T .
Definition of set equality (=): S = T if and only if (x ∈ S if and only if x ∈ T ).

Theorem If S ∩ T = S, then S ⊂ T .

Pictures, such as Venn diagrams, may be very useful and convincing, but
they are not the same as formal proofs [Sections 1.2 and 2.3].

Proof:
[Step 1] Let x ∈ S.
[Step 2] Then x ∈ S ∩ T by the hypothesis that S ∩ T = S [and the definition

of set equality ].
[Step 3] Then x ∈ T by the definition of set intersection. "

The first sentence in this proof is “Let x ∈ S.” Why?
The answer involves translation of the term subset and then logical reorganiza-
tion [Sections 1.2, 1.4, and 1.5].

To organize a proof, first inspect the conclusion.

The conclusion of “If S ∩ T = S, then S ⊂ T” is “S ⊂ T .” The conclusion
may not look like a conditional sentence, but when translated [Section 2.3] into
terms that are more primitive, it is a conditional sentence. By definition the
conclusion, “S ⊂ T ,” is equivalent to “If x ∈ S, then x ∈ T.” So the theorem
could be restated:
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Theorem again, translated: If S ∩ T = S, then (if x ∈ S, then x ∈ T ).

Many theorems have this form. !
Definition 16. The form of a compound sentence is a symbolic representation
of it in which the logical connectives are exhibited and the places of the component
sentences are held by letters [Section 1.3]. (Many logic books use p and q. We
use capital letters such as H and C. We use lower-case letters to represent
numbers, not sentences.) A sentence with the connective if . . . , then . . . in
the form “If H, then C,” is called a conditional sentence [Section 1.3]. The
component sentence in the place of H is called the hypothesis and the sentence
in the place of C is called the conclusion. The conditional sentence “If H,
then C,” is often abbreviated to “H ⇒ C,” which may be read “H implies C.”

To prove a conditional sentence true, the hypothesis may be regarded as
true and treated as if it were a prior result in order to deduce the conclusion
[Section 3.3].

Example 11:
The form of “If x ∈ S, then x ∈ T”

is “ B ⇒ C.”
In the form, B and C are placeholders. The form could be expressed with
different letters, for example, “A⇒ B.”

The proof of the theorem has a lot to do with its form. The position of the
connectives often dictates how the steps of the proof are arranged.

Theorem, translated: If S ∩ T = S, then (if x ∈ S, then x ∈ T ).
Its form: H ⇒ (B ⇒ C) !

The theorem is a conditional sentence, and inside the theorem its conclusion
is also a conditional sentence. It is common to reorganize theorems of this form
using this important logical equivalence [Section 1.4].

Theorem 17 (A Hypothesis in the Conclusion). H ⇒ (B ⇒ C) is logically
equivalent to (B and H)⇒ C. B is the hypothesis in the conclusion.

B is purposely written before H in “(B and H) ⇒ C” because proofs of
such results usually begin with B rather than H.

The proof of Example 10 used the reorganization in Theorem 17

If S ∩ T = S, then S ⊂ T

is equivalent to

If S ∩ T = S, then (if x ∈ S, then x ∈ T )

by translation of subset. It has the form H ⇒ (B ⇒ C), so by logic (A
Hypothesis in the Conclusion, Theorem 17), it is equivalent to

If x ∈ S and S ∩ T = S, then x ∈ T
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which has the form B and H ⇒ C.

The set-theory theorem and its proof are repeated next. Note how the proof
uses this logical reorganization perfectly. It begins with B [x ∈ S]. It ends with
C [x ∈ T ] and uses H [the original hypothesis] in the middle. Logic tells us
where to begin and where to end the proof.

Theorem: If S ∩ T = S, then S ⊂ T .

Proof: Form
[Step 1] Let x ∈ S B
[Step 2] then x ∈ S ∩ T by the hypothesis that S ∩ T = S

[and the definition of set equality] H
[Step 3] Then x ∈ T by the definition of set intersection. C

This example shows that it is important to know the common ways in which
theorems are translated and logically reorganized. The logic is studied with
truth tables [Section 1.3].

Conclusion. A proof of a theorem is a sequence of statements which demon-
strate that the theorem is a logical consequence of prior results. In proofs,
logic, prior results, placeholders, translation, form, and logical reorganization
play important roles. Each will be discussed thoroughly.

Terms: Proof, prior result, placeholder, equivalent, connective, form, con-
ditional sentence, conjecture, generalization, existence statement, quantifier,
counterexample.

Exercises for Section 1.1, Preview of Proof :

A1. ! True or false?
a) In this text, “Theorem 5” in bold refers to the fifth theorem in the section.
b) Generalizations are necessarily true.
c) Identities are necessarily true.
d) Existence statements are necessarily true.

A2. ! True or false?
a) In this text, “Definition 5” in bold refers to the fifth definition in the section.
b) The sentence “The equation x + 3 = 5 has a solution” is an existence statement.
c) The equation “x2 = 2x” uses x as a placeholder.
d) The equation “4x + 5x = 9x” can be regarded as an abbreviated generalization.

A3. ! True or false?
a) Some identities are false.
b) Some generalizations are false.
c) Some existence statements are false.
d) Some theorems are false.
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A4. ! True or False?
a) Generalizations are necessarily true.
b) Existence statements are necessarily true.

—– ! Equivalence. Are the two sentences equivalent? Yes or no?
A5. 2x = 8, x = 4 A6. x < 4, x2 < 16
A7. x = 3, x2 = 9 A8. x > 2, x2 > 4
A9. a = b, a + c = b + c A10. a = b, a− c = b−c
A11. a = b, ca = cb A12. S ⊂ T , S is a subset of T

————
B1. a) Define placeholder. b) Do placeholders permit letter-switching? c) Give an ex-
ample of letter-switching. [One example requires two sentences, one before switching
and one after.]

B2. The Zero Product Rule stated in Example 1 could be stated with other letters.
Do it.

B3. In the definition of subset in Example 3 the variables are placeholders. Restate it
using R and S.

B4. In the definition of complement in Example 3 the letter S is a placeholder. State
the definition using letter T .

—– ! When a variable in a sentence is a placeholder, it may be replaced by some
other letter of the same kind without changing the meaning of the sentence. Which
of these use x as a placeholder?
B5. For all x, 2x + 3x = 5x. B6. 2x + 3x = 5.
B7. x < 5 iff 2x < 10. B8. If x > 3, then x2 > 9.
B9. x2 = x + 7. B10. x + 5 = 7 iff x = 2.
B11. (x + 1)2 = x2 + 2x + 1. B12. (x + 1)2 = 16.
B13. 2(x + 5) = 30. B14. 2(x + 5) = 2x + 10.

B15. a) Define generalization. b) Are generalizations always true? c) Define identity.
d) What is the difference between a generalization and an identity?

B16. Define counterexample.

—– ! Here are some generalizations. Restate each making the for all (or for each)
explicit.
B17. If b > 5, then |b| > 5. B18. If x >5, then 5x > 25.
B19. ab = 0 iff a = 0 or b =0. B20. a = b iff a + c = b + c.

—– ! Here are some generalizations. Are they true? If they are true, just say so. If
not, give a counterexample.
B21. If x < 5, then x2 < 25. B22. If x > 5, then x2 > 25.
B23. If x2 > 25, then x > 5. B24. If x2 < 25, then x < 5.
B25. If b > 4, then |b| > 4. B26. If b < 4, then |b| < 4.
B27. If|b| < 4, then b < 4. B28. If |b| > 4, then b > 4.
B29. 2x ≥ x. B30. x + c > x.
B31. If c > 0 and x > 0, then cx ≥ x. B32. x/2 ≤ x.
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—– ! Here are some existence statements. Are they true?
B33. There exists x such that x2 < x.
B34. There exists x such that x2 = (x + 1)2.
B35. There exists x such that |x| < x.
B36. There exists x such that |x| > x.
B37. x2 = 2 has a real-valued solution.
B38. x2 = −2 has a real-valued solution.
B39. x2 = 2 has a rational-number solution.
B40. x2 = 16 has a rational-number solution.

B41. ! Here is a theorem: x3 + bx2 + cx + d = 0 has a solution.
a) Is it an existence statement? If so, what exists?
b) Is it a generalization? If so, what is the quantifier for all attached to?

B42. ! Identify the form of “If x < 5, then x2 < 25.”

B43. Define proof. Proofs have two major components. What are they?

————
C1. “x2 = 25 is equivalent to x = 5 or x = −5.” The sentence is true.
a) Does it say that x2 = 25 ?
b) Is the sentence in quotations marks true if x = 3?
c) How can it be true if x = 3?

C2. The Zero Product Rule may be stated: ab = 0 iff a = 0 or b = 0.
a) The quantifier for all is suppressed. What would be mentioned there if the for all
were explicit?
b) Is it true if a = 2 and b = 3?
c) How can it be true if a = 2 and b = 3? Then ab = 6 and not 0!


