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What should students know about inverse functions? The place to discover the
value of inverse functions is not in the textbook sections that teach about inverses,
but in the subsequent sections and courses where inverses are actually used. A
review of the uses of inverse functions is employed here to evaluate the pedagogical
value of various approaches to teaching about inverses.

Almost all textbook sections on inverses are similar. They address the idea
that f~!(f(z)) = z, the notation with “—1," the term “one-to-one,” the use of
horizontal-line test, and the concepts of domain and range. FEach text teaches an
algorithm for finding f~! when (and only when) f is simple. The following review
demonstrates that introductory textbook lessons and homework on inverses usually
emphasize parts of the subject that do not reappear, and fail to emphasize other
parts that appear frequently. This shows a need to rethink what is emphasized
when inverses are taught. Analysis of the review suggests appropriate pedagogical
changes.

Review of The Uses of Inverses

Consider the actual uses of inverses and the value of the concept. Inspection of
precalculus and calculus texts shows that, after the introductory section on inverses,
inverses appear primarily when equations need to be solved. For example, textbooks
define and use the inverse sine function to solve equations of the form “sinx = ¢.” In
this context students find two things difficult. One is the notation. The superscript
“—1" in the notation for inverse sine, sin !, looks like the notation for the reciprocal,
which is a difficulty addressed by all texts. The other. more significant, difficulty is
that there is a second triangle-angle solution to “sinz = ¢” that is not obtained by
the obvious calculator keystrokes. When an obtuse angle x satisfies “sinx = 0.98,”
students often trust their calculators to find the solution and erroneously answer
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“r = 78.5°” because they found sin™!0.98 and never thought about the second
solution. Students must learn that there is a second solution for triangles, “x =
180° —sin~10.98.”

Texts also use inverse functions before trigonometry. For example, squaring is
simply multiplication, but solving “z? = ¢” is much more complicated, so a name is
given to the method of solution, the square-root function. Of special interest in this
context is the additional complication that there is a second solution not given by the
square-root function (and often forgotten by students). Similarly, in intermediate
algebra and precalculus when monomials are discussed, the equation “z™ = ¢”
is solved using the inverse function and there may or may not be complications,

depending upon whether n is even or odd.

In precalculus, inverses also appear in the context of exponential functions.
Logarithmic functions are needed to solve equations such as “10% = ¢,” “e>® = 12"
and “10,000(1.04)¢ = 15,000.” The graphs of y = 10% and y = log z, as well as y = e®
and y = In x, are mirror images of one another through the line y = x, because (b, a)
is on the graph of the inverse when (a,b) is on the graph of a function, which is a
typical lesson from the initial section on inverses.

In calculus, new uses of inverses are rare. Inverse trigonometric and inverse
hyperbolic functions appear as integrals of certain algebraic functions, so the deriva-
tives of these inverse functions must be obtained. The key prior result about inverses
is f(f~!(z)) = z. By differentiating this using the chain rule, the derivative of
f~Y(z) is derived, which yields the inverse function as the integral of its derivative.
An infinite series for tan~!z can be derived from its derivative and the sum of a
geometric series.

Conspicuously absent in all intermediate algebra, precalculus, and calculus
texts, after the initial section on inverses, is any occasion to derive f~!(z) for simple
algebraic functions such as f(x) = 3z + 1. The algorithm for deriving f~!, however
conceptually significant it may be, is never used again.

Lessons and Inverses

This comprehensive review outlines what is important about inverses. It allows
for a comparison of any exposition about inverses, and its emphasis on each concept,
to the future value of the lesson. This article employs examples from only three
popular texts, but the reader is encouraged to similarly evaluate the text she or he
uses.

The review shows that the primary motivation for developing inverses is to
name a method for solving equations that cannot be solved with simple techniques.
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6 Teaching about Inverse Functions

If students need to solve “f(z) = ¢’ for a simple algebraic function such as f(z) =
3z +1, they can just solve the equation—there is no need to generalize the equation-
solving process to find and name the inverse function. This is why inverses are never
again derived (only defined). This also shows that the point of any lesson about
how to derive f~! from f must be conceptual, not computational. What concept
is taught by deriving the inverse of f(z) = 3z + 17 It must be that f ~1 generalizes
the solution process and is used for solving equations.

Nevertheless, most precalculus texts fail to emphasize the primary context
which motivates the author’s interest in inverses— solving the equation “f(z) = ¢.”
For example, Dugopoloski (2002) introduces the section by saying “It is possible for
one function to undo what another function does” and never mentions the equation-
solving purpose. But the reason for the interest in inverse sine is so one can solve
“sing = c.” Somehow the typical exposition has lost track of the practical use of
inverses.

Similarly, many texts teach-an algorithm for finding f ~1 that does not take
advantage of the possibility of perfectly paralleling the process for solving “f (z) =
¢ for z. For example, Sullivan (2002) has students switch x and y before solving,
which requires the students to solve for y, instead of solving for z as they would
in the motivating problem. Look at this typical “switch letters first” exposition
(Sullivan (2002), page 226).

“If f is defined by the equation
y = flz)
then f inverse is defined by the equation

z = f(y)

The equation z = f(y) defines f~1 implicitly. If this equation is solved for y, then
the ezplicit form of f~! is obtained, that is,

y=/"")"

True. But anyone looking at “y = f(z)” next to “x = f(y)” sees something is
wrong. If the first is true, the second is false. So, the student must see the second
as beginning a new and arbitrary algorithm: Use the same function, switch z to y
and y to z. Then solve for y. The result is f~!(z). It works, but it’s a mystery!
The work will, unfortunately, not look like the work for solving “f(x) = 17,7 which
it can and should in order to reinforce the concept that f~! operates on images, y,
of f and returns arguments, z, of f.
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Why not use this algorithm? (1) Set f(z) = y. (2) Solve for z. The result is
“r = f~1(y).” Simple!

Teaching this is easy. Suppose f(z) = 3z + 1. To show that the process for
solving “3z + 1 = 17" is the same as for “3z + 1 = 92,” do both. Note that in
each case you “Subtract 1 and then divide by 3.” Students might observe that the
number on the right does matter—different numbers yield different solutions. This
observation enables us to focus attention on what students are really doing when
they find the inverse function—they are abstracting the process from the numbers.
One can say, “The number matters to the solution, but not to the solution process,
which depends upon f and not upon ¢ (or “y”). The solution process is a function
(which is called f~!), not a number.” Teaching about inverses can help foster the
algebraic habit of “abstracting from computation” (Driscoll 1999), but not if the 2’s
and y’s are arbitrarily switched first.

A “function-loop diagram” makes the relationship of f andf~* clear (Figure 1).
The function f takes z-and-yieldsy. The function f~' takes y-(perhaps17) and
returns .

f
/"X3 /r+1

numbers — 3x+1=

operations — r 1

Figure 1: A function-loop. f takes = to y. f~! takes y and returns z.

operations —

Of course, it is legal to switch letters. Although it is natural to think of f as
operating on z and f~! therefore operating on y (Figure 1), the letter used to define
a function is not critical. The assertion “f~}(x) = (z — 1)/3” has precisely the
same information as “f~!(y) = (y — 1)/3.” However, deriving f~!(z) by switching
letters first does not parallel the usual computation which being attempting to
generalize. Deriving f~!(y) does, and students can switch letters last, if there is
reason to. (However, often there is not. Giving f~1(y) is perfectly meaningful.)
This can be a good occasion to explain again that functional notation describes
a relationship between the argument and image, and the letters used to describe
that relationship are not critical. It is a shame that this is usually the only context
where letter-switching is emphasized, erroneously leading students to conclude that
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8 Teaching about Inverse Functions

letter-switching has something to do with inverses, when it is really just a property
of functional notation and letters could be switched in any context.

Switching letters before solving has another significant pedagogical disadvan-
tage; it confuses the important distinction between argument and image. Some
letters are used in a helpful manner to make this distinction—switching them would
be wrong. The equation “sinf = ¢” is fine, but the equation “sin™'8 = ¢” is not.
The symbol 8 is fine for an angle, but not for the argument of inverse sine. Even
if the letters are z and y, why would a teacher want to confuse which is which?
When the problem states “f(z) = y,” how can students be comfortable writing

“fly) =27

Texts mention that the domain and range switch too. This would be a good
place to formulate range in relevant terms. The key idea is that range is essentially
an equation-solving concept. Instead of only saying “The range of f is the set of
all images of elements in the domain” one could state the equivalent, but truly
meaningful, “The range-of f is the set of all ¢ such that the equation f(z) = c has
a solution.”

Regardless of how the chosen algorithm for computing f~! works, or which
version of the algorithm works better, a review of texts shows that students will
never do this again. Therefore, when the two approaches above are evaluated
and compared, one is comparing how well they foster appropriate conceptual devel-
opment. The key concepts are that f~! is for solving equations, f~! abstracts a
process, and f~! operates on the original y’s to return the original z’s. The method
that solves for x (instead of switching letters and solving for y) is clearly preferable
on all counts.

One-to-One

The review of the uses of inverses shows that the useful ones are special func-
tions such as the square-root function and the inverse-sine function. Students
have well-known difficulties remembering to think of the obtuse-angle solution to
“sin# = ¢.” What can an introductory section an inverses do to help?

Sometimes (for some choices of f) there is more than one answer to “f(z) = ¢”,
and using a calculator’s inverse function will find only one, so students must (1) think
about whether there might be additional solutions, and (2) learn how to find them
from the one given by the calculator. This is the point of the concept “one-to-one”
and the horizontal-line test. They are used to separate out functions for which the
equation “f(z) = ¢” might have more than one solution.
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Unfortunately, most texts fail to make this point. Larson and Hostetler (2000)
define “one-to-one” by stating that “f(a) = f(b) implies @ = b,” but never hint that
this might mean that if f is not one-to-one, then there might be more than one
solution to “f(z) = c,”and those cases are tricky. Consequently, they do not note
that, even if there is an inverse function defined (as there is when the equation is
“r2 = ¢” or “sing = c”), the inverse of ¢ might not be the desired solution. And, if
there is more than one solution, almost no texts take the occasion to mention how
theorems are written using “or” to give the other solutions in addition to )
[For example, “z? = ¢ if and only if z = \/c or z = —c”].

The concept one-to-one is also important for defining inverse functions. To
obtain an inverse function, by the definition of function, there must be only one
number returned. Does the definition of one-to-one explain this? The definition is
either “If xy # 3, then f(z1) # f(x2)” (Sullivan), or its contrapositive, “If f (b) =
f(a), then b = a” (Larson and Hostetler). These formulations are used in proofs—
but proofs are not the focus here. Which is easier for students to understand?
Often neither is at all clear until they are illuminated with the horizontal-line test,
“Every horizontal line intersects the graph of the function at most once” (Larson
and Hostetler). Students who have used graphing calculators will be familiar with
the idea that the intersection of two graphs yields a solution to an equation. The
definition could be reformulated to take advantage of what students know about
graphs: “The equation ‘f(z) = ¢’ has at most one solution,” or “If the equation
‘f(x) = ¢ has a solution, it has only one.” Because solutions to the equation
“f(z) = ¢” are found where the horizontal line y = ¢ intersects the graphof y = f(z),
these alternative definitions

(1) incorporate the horizontal-line test,

(2) fit perfectly with the definition of range that emphasizes solutions to “f(z) = ¢,”
and, most importantly for this context (which is not the study of abstract
proofs),

(3) directly relate the concept of one-to-one to solving equations.

These alternative versions develop a concept that helps students avoid mistakes
when solving equations. It immediately follows that a function is not one-to-one
if and only if seme-value of ¢ yields-an-equation “f(x) = ¢” with more than one
solution. Therefore, if the function is not one-to-one, even if there is a nominal
inverse, it will not necessarily find all the solutions. This is the important way to
regard one-to-one because this addresses the mistake students make. The sine
function has a nominal inverse, sin™!, but it does not find all the solutions to
“sinz = 0.4.” All teachers have seen students overlook the second-quadrant solution.
Here is also a good opportunity to discuss how theorems are written with “or” to
express additional solutions. The fourth-power function has a nominal inverse, but
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10 Teaching about Inverse Functions

it does not find all the solutions to “z* = 37.” In contrast, the exponential function
e® has a nominal inverse and the inverse does find all the solutions because the
exponential function is one-to-one.

Conclusion

A review of the uses of inverses reveals that the algorithm for computing f=!
is never used again after the introductory section. Inverses are most frequently
encountered as methods of solving equations of the form “f(z) = ¢,” and the most
difficult lesson is that equations may have more than one solution when f is not
one-to-one. Precalculus textbooks tend to emphasize the algorithm and rarely even
mention the complications of the important case when f is not one-to-one, which
suggests that textbook priorities have been misplaced.

The value of learning and practicing the algorithm is not computational, but
could be coneeptual. The-method forfinding f~! has-its natural-interpretation in
the context of solving “f(z) = y” for x. Similarly, “one-to-one,” the horizontal-line
test, “domain” and “range” have natural interpretations in that context. However,
teaching the version which first switches x and y does not contribute to proper
conceptual development.

Some might argue that, to find f~!, first switching = for y to find f~(z)
“works” and the students can do it. Nevertheless, one should not judge learning
based on whether an unimportant algorithm can be memorized. Teachers should
prefer consistent notation to inconsistent notation, emphasize the actual context
(solving equations), emphasize the real significance of the terms one-to-one and
range, and provide a perfect parallel to the usual process of solving equations for x.
Textbook expositions should emphasize the equation-solving context and discuss the
possibility of solutions to “f(z) = ¢” other than the one returned by a calculator,
z = f~l(c), because, in the future, solving equations (and, all too often, omitting
an important solution) is most of what students will do with inverses.
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