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Why Read This Manual?

This manual is intended to teach you, the instructor, some of what you
would know about the course if you had already taught the course. Parts of this
course will seem different to you, and your students have never taken another math
course anything like this one. The class will go very well if you understand why we
do what we do. Please take our advice and read some of this manual.

This manual also 
1) suggests things to for you do in class,
2) suggests things for you to ask students to do in class,

2A) short-answer questions that clear up misconceptions
2B) longer questions for students to work in groups, possibly at the board

3) alerts you to various types of errors that we have seen that you might not expect
students would make, and
4) discusses the value of using our terminology (A few terms we use might not be
familiar to you, but you will like and appreciate them).

For example, in Section 1.2 on sets we note many students do not distinguish
properly between the sets {1, 2}, (1, 2) and [1, 2]. In Sections 1.3-1.6 on Logic, errors
are amazingly common in exercises with the connectives “if..., then...” and “or” and
with negation. To deal with these difficulties, the text has numerous exercises
designed to be done in class. Everyone learns from their responses and your
feedback. You could start almost every day by having students do these types of
problems from the previous day. The exercises are easy to find on the fly because
they are marked with a smiley face, (.

Here are some of the marked problems so you can see what we are talking
about.
Section 1.1.  A1, 3*, 4, 5-11, B5-14, B17-20, B21-32, B33-40 [problems marked
with * are particularly important.] 

1.2.  A9-18*, A33-66*, A25-32   [There are many more in subsequent sections.]

Problems marked with a superscript W (for “WeBWork,” the MAA program), such
as 1.2, A19, have corresponding on-line problems both in the MAA on-line library
and at the Montana State site (which you are free to use):
http://webwork.math.montana.edu/webwork2/M242/

We recommend you reserve a classroom with a lot of board space or have a
device for projecting student work. Beginning in Chapter 3 we frequently have
students work in pairs or groups. By sending most or all of the students to the board
simultaneously you can create a real collaborative research experience.

http://webwork.math.montana.edu/webwork2/M242/
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We strongly recommend you encourage your students to actually read the
text. To this end, some professors assign some homework from the next section
before covering it. One professor who uses the text assigns all the required
homework before covering the section in class. However you choose to do it, make
sure students realize that they are studying a written language that they must learn to
read and write.

We do not introduce many technical terms, but when we do, we have a good
reason, discussed in the text and also in this manual. For example, we use the term
“definition in sentence-form” because it makes proofs far easier if the terms are
defined within sentences that give the proper context. Proofs are sequences of
sentences, not sequences of expressions. For example, set intersection can be defined
correctly more than one way: S 1 T = {x | x 0 S and x 0 T} [defining an expression],
or x 0 S 1 T iff x 0 S and x 0 T [defining a sentence which includes the expression].
The latter, in “sentence-form” is used in proofs to replace one sentence with another,
so we emphasize that version. 

Sometimes we introduce terms we have found useful that you may not
recognize. This manual will explain why we do what we do. If we say something
unfamiliar to you, rest assured you and your students will find it useful for reading,
writing, and thinking math, and for doing proofs. 

Chapter 1. Introduction to Proofs

Section 1.1.  Preview of Proof 

Why?  This section covers a great deal that will be covered throughly in later sections
[The section number is noted in brackets]. With these terms and concepts you can
discuss any part of logic whenever it comes up. The students will at least have heard
of it and you won’t need avoid math just because you have not lectured on the topic
yet.  

For example, truth-table logic usually precedes the logic of quantifiers, but
most mathematical conditionals are generalizations (e.g. “If x > 2, then x  > 4 .”) 2

With the terms in Section 1.1, you can discuss generalizations even before the
sections devoted to them [Sections 2.1 and 2.2].”

Mathematicians commonly think of sentences in alternative forms (e.g. the
contrapositive is equivalent to the original conditional, Section 1.5). Theorem 17 (A
Hypothesis in the Conclusion) is an alternative form which is very commonly used
throughout mathematics (perhaps not with this name). This theorem is followed by
an example which shows how theorems about “form” are used to reorganize
theorems and their proofs. [Logical form is discussed in 1.3 through 1.6.]
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Many exercises such as A1ff and B5-B42 can be done aloud in class. For example,
B5-14 focus attention on how variables are used in mathematical sentences. 

Section 1.2.  Sets. 
 
Why do Sets Now?  Set theory terms are defined with logical connectives (e.g.
intersection is defined with and). So set theory and logic reinforce each other. The
logic in Sections 1.3 through 1.6 has perfect set-theory parallels and similar Venn
diagrams.  Sets of numbers (our universal set will almost always be the reals) make
good examples for logic.

Think of this section as including set theory content, but also beginning
lessons about connectives (“and”, “or”, “not”, “if...then...”, and “iff”) and about how
mathematical definitions are phrased. 

Observations.  Perhaps surprisingly, many students do not know much about sets and
set notation when they enroll. They don’t know the difference between [, (, and {.
Students often don’t know how to pronounce what they read, which makes reading
harder. Experience shows that many students cannot read aloud “{x | x > 7}” and
when they learn how, their comfort level increases. Interval notation is hard to read
out loud. You might as well admit it. How do you pronounce "(a, b]"? After
discussing pronunciation you may ask them exercises A9ff.

Long experience reading student’s work shows that many write
ungrammatical expressions and sentences (e.g. “7 d (0, 10)”). “Grammar” homework
helps them keep track of the category of mathematical objects our symbols represent
(1.2, A33ff).

Three Ways. The definitions of “set equality” and “intersection” and “union” are
given three times, in once in English and two ways in Mathematics.  Students need
to get used to the fact that the English definition is not the formulation in which
mathematics proves results. English may help their understanding, but the
mathematical formulation is the useful one. In pedagogical terminology, we want
them to develop not only a concept image, but also a concept definition (page 21 and
again in Section 2.3 on page 125). 

Two Languages. Students are happy to distinguish between English and
Mathematics, the language of mathematics. This section begins doing so. It is
important that there is more than one way to say the same thing (for example,
Definition 1.2.9 of intersection on page 16.). We use the term translate to refer to
restating results in some other version. Note that true understanding of math will
require understanding of logical connectives and generalizations, which are
upcoming the subjects. “Subset” is a great term.  "S d T  iff  x 0 S => x 0 T." This
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“sentence-form” definition uses the key connective, "=>" (“if..., then...”). We use this
definition many times during the term. Note that sets are determined by their
members, so the mathematical form of the definitions of set-theory terms is in some
sense “best”, since it clearly shows facts about the members. For example, 
"x 0 S 1 T iff x 0 S and x 0 T," tells you precisely what is in "S 1 T."

Our Universal Set.  Of course, sets can be very general and contain elements such as
“Winston Churchill,” but such sets rarely appear in mathematics. For almost all our
work, the universal set is conventionally the set of real numbers.  This permits us
to use lower-case letters for numbers and upper-case letters for sets. Students are
often initially confused about the difference between membership and subset. By
keeping sets rotationally distinct from numbers, we can help clarify the difference.

Later, when we need sets of sets, this problem will have already been solved
and we can begin using upper-case letters as elements. But it is not a good idea to do
so when sets are first introduced.

Conventions. We distinguish between the uses of lower-case and upper-case letters.
Variables for numbers usually are lower-case letters such as x, y, a, b, and c. (Some
well-known formulas such as "C = ðd" use upper-case letters for numbers.) The
letters n, i, and j are reserved for integers. Sets are represented by S and T and upper-
case letters near them in the alphabet. Sentences in logic are represented by upper-
case letters such as H, C, A and B. Making the distinction firm helps students read
mathematical sentences. (We avoid the “p” and “q” of logic texts; lower-case letters
look too much like numbers.)

Lower case and upper cases letters commonly denote distinct things. For
example, in integration in calculus, textbooks distinguish between f and F in

. 

Do not ignore mistakes like using “A” for “a”. Cure this problem early. 
Our conventions are listed on page 44 of Section 1.3.

Chapter 1.3-1.6.  Logic for Mathematics. [Comments on individual sections
follow below.] Section 1.3 begins the subject of logic. We emphasize only that part
of logic which is useful for mathematics. Chapter 1 covers useful logical
equivalences and deduction (using truth tables as a tool, not as an end). Chapter 2
emphasizes the use of the quantifiers “for all” and “there exists.” 

All the important logical equivalences are listed again at the end of Chapter
1 on pages 88-90. Have your students flag those pages. 

The logical equivalences are selected because they exhibit the most common
patterns of mathematical thought. A few examples go a long way. You can use the
next examples again and again.
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Good Examples of Logical Patterns. It is helpful to have a few simple
examples in mind which you can use again and again. Here is a list of examples (in
bold) which can be manipulated and expanded using the patterns in the logical
equivalences.

Example 1A:  x > 5 => x  > 25 true    H => C2

   1B:  x  > 25 => x > 5 false, because of a counterexample,2

the converse, C => H
   1C:  x # 5 => x  # 25 false    not H => not C2

which expand to:
x  # 25  => x # 5 true, the contrapositive, not C => not H  2

x  > 25 => x > 5 or x < -5. true 2

x  > 25 and x # 5 => x < -5 [LE, by “Or” in the Conclusion, T1.5.6] 2

not(x > 5 or x < -5) => not(x  > 25) [Contrapositve, T1.4.2] 2

x # 5 and x $-5 => x  # 25 [deMorgan’s Law, T1.5.3A] 2

H and A => C does not imply H => C
“0 # x # 5 => x  # 25" is true, but “x # 5 => x  # 25" is false.2  2

Example 2: x > 5 => 3x > 10 true, even when x = 4 or 3
(rows 3 and 4 of the truth table)

Example 3: ab = 0 iff a = 0 or b = 0 has two halves, by T1.4.5 on “Iff”
which expands to

ab = 0 => a = 0 or b = 0 can be rearranged by “Or” in the Conclusion
ab = 0 and a � 0 => b = 0
a = 0 or b = 0 => ab = 0 can be arranged by “Cases”
a = 0 => ab = 0 and b = 0 => ab = 0.

Example 4: |x| < c iff -c < x < c A theorem on absolute values ["-c < x < c"
abbreviates "-c < x and x < c," and it is good
for them to become aware of abbreviations.]

Which expands to:
Half of that is
-c < x < c  => |x| < c [A and B => C, A alone is not enough]
Negate both parts to get
|x| $ c  iff  x # -c or x $ c. Another theorem on absolute values.

[split “iff” theorems in two by Theorem 1.4.5]
|x| $ c =>  x # -c or x $ c. [half of the previous result]
|x| $ 5 and x > -5 => x > 5. [from “Or” in the Conclusion]
H and A => C does not imply H => C
The previous result does not imply “|x| $ 5 => x > 5"
x  $ 5 or x # -5 => |x| $ 5 The other half of the second theorem on
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absolute values. [We could apply Cases,
T1.4.8, to this]

Example 5:  ac = bc => a = b is false
Which can be fixed: 

ac = bc => a = b or c = 0 true
ac = bc and c � 0 => a = b [“Or” in the Conclusion, T 1.5.6]
A or B => C is enough to show A => C, by Cases
“a = 0 or b = 0 => ab = 0" does assert “a = 0 => ab = 0"

Example 6:  For “iff”, use any definition, e.g. 
Definition 1.2.12:  S is a subset of T  iff  x 0 S => x 0 T.

(A perfect parallel between subset and if..., then... .)
Definition 1.2.9C:  x 0 S 1 T  iff  x 0 S and x 0 T.
Definition 1.2.10C:  x 0 S c T  iff  x 0 S or x 0 T.
Definition 2.3.3:  f is increasing  iff  x < z => f(x) # f(z).

   or
x > 5 iff 3x > 15

 

Observation: Our sentences are true or false. Unfortunately, some people are using
English as if it were multiple choice. For example, “Michael Jordan was not a good
basketball player. He was great.”  Mathematicians would say he was good, and great
is a subset of good. 

General Comments on Logic. Students find the material in Chapter 1 on truth tables
complete and satisfying. They are able to construct truth tables easily. The focus is,
however, not the ability to construct truth tables. The focus is the logic itself.

In logic we study form, not meaning. Form is abstract. Most students are
much more comfortable with studying meaningful sentences with terms they
understand than studying (meaningless) forms. Nevertheless, the emphasis is on the
patterns, not on the examples of the patterns. 

We name the important logical equivalences. They may not be names you
learned before, but we assure you that you will grow to like our names. They make
sense. By the way, there are many terms from logic we do not employ.  If you have
taught from a logic book, look at Appendix A at the end of this manual to see why
we omit some terms from a philosophy course on logic.  

Outlaw “It”. At first, students have trouble seeing the three (3) sentences in
"H => C". They may say “It is true” and you may not be able to tell which “it” they
have in mind. We get them to say “the conclusion is true” or “the hypothesis is
true,”or “the conditional sentence is true,” whichever they really mean. Too many
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students focus on the conclusion. For example, given that “If x > 5 then x  > 25" is 2

true, many originally think that it says “x  > 25" is true. No. The compound sentence 2

asserts that if x > 5, then x  > 25. Both the hypothesis and conclusion are open 2

sentences, the conditional sentence does not say either is true.
“It” is a word that gets class time. Students soon learn not to say “it” in the

context of conditional sentences when they realize how ambiguous it is.

Comments. The connective “or” is tricky in the context of solving equations. Is the
solution to "x  = 4" given by "x = 2 and x = -2" or by "x = 2 or x = -2"? It is also not2

easy for some students to distinguish "A and B implies C" from "A or B implies C."
The connective “iff” is pretty easy for them. The really tricky connective is “if..,
then....”  To understand the truth-table definition, they respond best to the “broken
promise analogy” (page 38), but, in that type of example, their understanding is really
more of social responsibility than the connective itself. Example 15 gives a
mathematical reason why "=>" is defined the way it is.

The patterns from Chapter 1 are used repeatedly later. As an instructor, you
want them to learn the theorems by name and to be able to use (and state) them
correctly, but they will have much more practice with them in significant contexts
later, so students who have trouble with patterns now will be able to learn them later.

By the end of Chapter 1 they are much more aware of the importance of
patterns. But many do not yet think at the pattern level. Their thinking is not yet that
abstract. But, they are much closer. 

Section 1.3.  Logic for Mathematics. [General comments on all of 1.3-1.6 are
above.] Section 1.3 begins truth-table logic. Of course, good examples from
mathematics will be generalizations (the subject of Chapter 2), so we mention
generalizations anyway in anticipation of Chapter 2. The list above has many good
examples. Here are two:

"x > 5 => 3x > 10" and its converse. 
“x > 2 => x  > 4" and its converse. 2

It is important for the students to realize that statements can be false. Open
sentences, such as equations to be solved (e.g. “2x + 5 = 13") can be false. We put up
a number of statements such as "5+2 = 7", "5(2) = 12", "4 > 6", and "5 < 9" and give
them letters. Then the students seem to have an easy time agreeing on the definitions
of “not”, “and”, and “or”, which seem to parallel English. “If and only if” does not
cause problems either.

Be careful with your examples of “If H, then C.” However, there is good
reason to avoid silly examples (too often seen in other texts). 

Bad Example: “5 > 3 implies Los Angeles is in California” is true.
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Technically, this example is correct. If the hypothesis is true and the conclusion is
true the conditional sentence is true. But, it certainly does not illuminate the meaning
of "=>" and only serves to confuse the students. We have very carefully avoided
giving examples of true simple conditional sentences. They do harm rather than
good. 

Inferior Example 2: If you cheat, I will quit playing. I do not quit playing. What can
you deduce?

Research shows that humans have innate social abilities that serve to deal
with such examples, regardless of logical abilities. Students like such examples,
because they do not have to develop logical abilities to handle them. The lesson, if
there is one, is not math. Unfortunately, examples like this do not help students learn
logic. The real reason why "=>" is defined as it is cannot be understood until
sentences with the same variable in the hypothesis and conclusion are connected by
"=>". Then there are lots of good examples which use variables. See Example 1.3.15,
page 38.

Theorem 1.3.14,  "H => C" is LE to "(not H) or C" is useful but not intuitive. Some
students have a hard time remembering this.

Continue to use the ( examples aloud in class, e.g. A1ff, A13ff, A29ff. 

Notation.  There are many notations for “not.” We spell out “not.” You may find it
convenient to introduce an alternative short hand (perhaps - or ¬) for board work and
homework. For “and” we are equally comfortable with the whole word, “and,” and
the symbol, "v", which is really only found in logic, but looks like a capital "A" and
is therefore easy to learn. Later, when it comes time to state mathematical theorems,
the word “and” is obviously preferable.

In class questions.  There are many good in-class questions. Open the text to any
homework section and begin asking problems marked with (. 

Double negatives (re T1.3.16):  Children should not be left unattended.
[A movie recommendation] Don’t miss it.
(Triple!)  Don’t fail to miss it!

Section 1.4.  Important Logical Equivalences.  The logical equivalences
emphasized here are genuinely important because mathematical sentences are often
reorganized using these alternative logical forms. They provide “sentence synonyms”
that every mathematician must know.

Theorem 1.4.7, “A Hypothesis in the Conclusion” is extremely important for
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higher math. It is very useful in proofs (e.g. Example 10, Section 1.1, pages 7-8).
Many proofs use the rearrangement of that logical equivalence.  They often don’t see
the point of giving “B” first, but there is a good reason for doing so and they will
grasp it later. We ask them to memorize it with “B” before “H.”

Theorem 1.4.8, “Cases” mixes “and” and “or” in a way they do not find
natural. “Cases” helps them understand the meanings of “or” and “and”. 

Observation: Experience shows that students who skip columns (combining two or
more connectives into one column) often get it wrong. As I write this I just graded
a homework with an 8-row truth table. Everyone (5 of 28) who skipped columns got
the truth table wrong. All of the others got it right. Lesson: Make a column for every
connective!

Section 1.5.  Negations.  Negation of a conditional sentence needs a lot of
emphasis. 

Of all the logical equivalences, Theorem 1.5.2, “Negation of a conditional
sentence” is the hardest. It is best to anticipate existence statements and go straight
to the negation of “For all x, H(x) => C(x)” (page 62). They have an intuitive feeling
for a “counterexample,” but often cannot see the pattern in the concept. That is, they
can say why "x  > 25 => x > 5" is false, but they don't see it abstractly. It is false2

because there is a case where the hypothesis is true and the conclusion is false. This
is the most dramatic instance of students being able to do the right thing in particular
examples without being able to give an abstract formulation of what they did.

The negation of "H => C" is "H and not C" (Theorem 1.5.2, page 62). 
“The hypothesis is true and the conclusion is not.”

You will often see them write that the negation of "H => C" is "H => not C", or some
other incorrect permutation. We recommend you anticipate existence statements
as in Section 2.2, Theorem 6 (page 62 and page 105). In the context of a
generalization, “For all x, H(x) => C(x)” is false precisely when “There exists an x
such that H(x) is true and C(x) is false” (Section 2.1). Then you can explain why "x2

> 25 => x > 5" is false. You need the “there exists” for counterexamples to make
sense. This anticipation does not bother students. The and is very hard to remember.
Many students wrongly insert "=>" instead.

"x  > 25 => x > 5" is false (as a generalization). That does not make "x  > 25 2  2

=> x # 5" true. 
It does make "There exists an x such that x  > 25 and x # 5" true. 2

We state Theorem 1.5.8, “Proof by Contradiction”but we do not emphasize
it at this stage. Section 3.4 covers it thoroughly. 
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Section 1.6.  Tautologies and Proofs. Most students have an easy time with
tautologies. They love Theorem 1.6.5 (page 77) which explains a lot about proofs.

The preview with actual proofs and manipulation of forms is harder. It needs
to eventually be mastered, but maybe not yet. It is good for the students to know
where they are going. The exposure is important, but they need all of Chapter 2
before we can hope for mastery. However, this preview prepares them to expect to
translate sentences (to exhibit the connectives) and then rearrange sentences (into
useful logically equivalent forms).

They respond well to the idea that we do not need to distinguish between
singular and plural (pages 75 and 104).

Amazing Logic Difficulties. Experience shows that some math students with good
grades in previous courses nevertheless have trouble with simple deductions. As an
instructor, you cannot assume what is obvious to you is obvious to them. 

Conjecture: x < 3 implies x # 3.
Conjecture: x # 3 implies x < 3. 
Conjecture: 3 < x < 5 implies x < 5.
Conjecture: x < 5 implies x < 5 or x $ 7.
Conjecture:  x < 5 or x $ 7 implies x < 5.

Most, but not all, students get these right as stand-alone problems, but more get them
incorrect when the deduction is buried in a longer problem. Examples 4, 5, 8, 9, and
10 address what can be deduced from what. Exercises B23-31 (and Example 1
below) are good examples to do in class. We do not drop this topic. There are more
such problems, of increasing complexity, in Sections 2.2 and 2.4, and you can easily
make up more yourself.

Examples like this next one are wonderful for clearing up misconceptions
(and there will be a lot of misconceptions!) 

Example 1: Assume this is true: If x < 4, then f(x) $ 9.
Which of these follow logically?

a)  If x < 3, then f(x) > 8.
Some say “No” because f(x) > 8 does not imply f(x) $ 9. “What about 8½?”

But they are reversing the order. This needs to be straightened out. Lots of similar
examples help (B27ff).
b) If x = 2, then f(x) � 7
c) If f(x) < 10, then x < 5
d) If f(x) < 8, then x > 5.
e) If f(x) < 7, then x > 3.

You can make more examples like this easily. Make sure your class has seen
many and can do them. In problems like those you may permute the numbers and
inequality symbols any way you like and some students will get them wrong until
thoroughly trained. They are not as simple as good mathematicians think!
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Chapter 2 has additional similar examples (e.g. 2.2, HW A31ff and B57ff).

Example 2: Determine which conjectures follow logically (FL) from Assertion 1, or
not (N).  Assertion 1: If x > 5, then f(x) # 3.
a) FL   N    If x = 4, then f(x) > 2. b) FL   N   If x  > 100, then f(x) < 4. 2

c) FL   N    If x = 7, then f(x) � 4. d) FL   N   If f(x) > 9, then x < 6.
e) FL   N    If x # 5, then f(x) > 3.

Example 3:  Suppose this is a fact: “If x > 1 and t < 5, then f(x, t) $ 3.”
If the following is also a fact, what can be deduced from those two facts?
a) x = 2.
b) x > 3 and t = 4.
c) x > 2 and f(x, t) $ 3. 
d) f(x, 4) = 2.
e) f(x, t) < 3. 

We will have many more examples like these in upcoming homework
exercises which you can do in class.

Examples 8 and 9 are very helpful.  Do not be afraid to create examples that
“obviously” follow, or do not follow, logically.

“x < 4 => x # 4.”  We have had math majors mark this “False.”  They ask,
“What about the = ? It can’t be = 4.” 

|x| < 5 => x < 5.  “What about -10?  x can’t be -10.”
In the hypothesis, x can’t be -10, but that is not relevant.

You might be surprised to find out how many students get them wrong until
they are trained. 

Here is a subtle distinction that bears on this difficulty.

A Subtle Distinction–Different uses of the Word "Need".  We don’t bring this up, but
you should be aware of the possibility that a student will misuse the word “need.”
Suppose we are given “If x > 4, then f(x) # 7,” and asked what can be deduced from
it and an additional fact such as “x > 5" or “x > 3.”  To use the given conditional we
need the hypothesis to be true. The hypothesis is “x > 4,” so “x > 5" would allow us
to deduce f(x) # 7, but “x > 3" would not.  However, for the conclusion, “f(x) # 7,"
to be true we do not necessarily need the hypothesis to be true (it is not stated with
iff).  If x = 3.5 the conclusion might be true anyway.  Note the two different types of
“need,” which are easy to confuse. 

Chapter 2.  Sentences with Variables.  Chapter 2 deals with sentences with
variables. What do they say?  How does logic apply to them? How can they be
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translated into other mathematical sentences which appear different, but express the
same meaning, but in a more convenient arrangement? Mathematicians “translate”
all the time, but hardly notice the process since they are fluent in Mathematics.

Students have seen some of Chapter 2 already in Chapter 1 because they have
seen variables and connectives in action. Chapter 2 asks students to recognize and
master all the mathematical usages of variables. This mastery is a tremendous
accomplishment. 

Students are happy to learn that there are 3 basic types of sentences with
variables. We think they knew something was odd when similar sentences had
different interpretations. Section 2.1 tells them they were right, and they are pleased.
 
Other Comments. They respond well to switching letters in the quadratic formula
(Section 2.3, Theorem 2, pages 121-122). The quadratic formula example is not
trivial. Letter-switching is a critical skill, and Section 2.3 emphasizes it.

In Section 2.3 they must finally understand placeholders. There is a very
simple idea behind definitions, but that idea is truly profound: equivalence, which
permits replacement. We want them to take a sentence with a new term they don't
understand and translate it into (replace it with) an equivalent sentence expressed in
more primitive terms. Then they can deal with it in those more primitive terms.
However simple this is in principle, it is not their natural approach and they need to
be reminded that it is the thing to do. 

Hardest is the idea of replacing a vague understanding of a term (“concept
image”) with a formal “concept definition”(Definition 2.3.5, page 125). We use these
useful terms to enable us to describe the level of understanding required to read and
write proofs. 

Section 2.4 points out how English can be ambiguous when Mathematics is
not. They understand this.

Section 2.5 is on existence statements and form illustrated in the context of
rational numbers. Conjectures are rearranged using our logical equivalences and
existence proofs are introduced. 

Section 2.1.  Sentences with One Variable. It is now time for students to
realize what mathematical sentences are about. We hope they grasp the higher-level
concepts of operations and order, and realize that some sentences are about such
high-level mental objects.

We tell them (admit to them) that a lot of mathematics is written in a manner
which does not explicitly distinguish the difference between two quite different kinds
of sentences. They can understand that by analogy with the following example which
we put on the board: What is the meaning of the word "lead"? If they answer about
leading and following, we say it refers to the metal, and if they answer about the
metal, then we mention leading and following. With a smile we then note that it is
obvious you need context to really know. Similarly with math. Sometimes you need
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context to know, and the context may be your own prior knowledge. They can deal
with that.

They can better understand that it is their responsibility to decide what they
are reading from the context when they realize that they do it all the time in English.

The role of generalizations in “true-false” questions is important, since it is
fundamental to mathematical thought.

The term "open" is more useful than you might expect. In a conditional
sentence, students often regard the conclusion as true, even though it is the entire
conditional which is true. In the example, "If x > 5, then x  > 25," both the hypothesis 2

and conclusion are open and not necessarily true. The term "open" gives us a way to
express that to students.  

Student Errors. Students may have difficulty distinguishing between quantified and
free variables. For example, which letters can be changed in "If x 0 S, then x 0 T"
without changing the meaning? Only "x". That sentence has the "for all x"
suppressed. But "b > 0 and c < d => bc < bd" could have any or all the letters
changed, since all are quantified.

Is it any wonder that mathematics is confusing to uninitiated students?

Parameters can be nicely introduced with some sequence of thoughts like this:
Solve 2x + 1 = 7. Solve 2x + 1 = 21. Solve 2x + 1 = something. Well, we are always
doing the same steps, so we could make it "2x + 1 = c" and solve. Now "c" is a
parameter describing a family of related equations. Now move to “Solve 3x + 1 =
19,” and as many more similar problems as it takes. They should rapidly see the
point.  We could “Solve ax + b = c” and have a family of equations with 3 parameters
and derive the solution of all similar equations once and for all.  "x" and "c" play
different roles.

Someone may ask, “Are parameters “free” variables?” It depends!  We must
have them in sentences (not just expressions) to tell.  In “x - a = b” the parameters
a and b are free.  In “x - a = b iff x = b + a” they are not free. The sentence “x - a =
b” describes a number, x. The second does not. It describes a method--how to solve
a type of equation.

This section pulls everything we have been talking about so far. Some terms
are new (e.g. "existence statement”), but the thrust is consolidation and clarification
of familiar ideas. Students are now sophisticated enough to be able to see why two
sentences may look similar and yet be interpreted differently. 

Something Worth Omitting.  The difference between an identity (as an open sentence
which is always true) and its corresponding generalization is subtle. Is

“2(x + 5) = 2x + 10” quantified or not? 
It is not explicitly quantified. We regard it as implicitly quantified. Technically, it
could be regarded as open. We do not belabor this in class. The question is, is it being
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regarded as one, or as many? Abstraction can turn the essence of many similar things
into one thing. If "2(x + 5) = 2x + 10" is regarded as a separate sentence for each x,
it is many (therefore, an open sentence which is always true). If it is regarded as an
abbreviated generalization, it is one (therefore, a true generalization). 

Section 2.2.  Existence Statements and Negation. The negation of a
generalization is an existence statement. Some students will want to express the
negation of “All are ...” with “All are not ....”  This error must be addressed.

Example: Ask them to consider this statement: “All the people in this class are
males.” That is false, but not because all are females, rather because some are
females. Mathematicians use the word “some” but the use of “there exists” is more
precise and it is the way the theory is phrased.

"x  = y  => x = y" is false, but so is "x  = y  => x � y." This illustrates that the2 2 2 2

negation of a generalization is not a generalization. 

A Useful Term.  Our term “positive form” (Definition 2.2.4, page 106) helps prepare
the students for an important idea. We prove something false by proving its negation
true. To do so we usually need the “positive form” of the statement in question. For
the negation of some sentence, the simple negation, "not(some sentence)," is rarely
useful.  We want it in "positive form" where "for all" changes to "there exists," and
vice versa, and the "not" is either gone or pushed as far inside as possible.

The comments about the (lack of) distinction between singular and plural are
usually well-received by the students (pages 75, 104). 

Make sure they learn to disregard the normal English inferences from singular
and plural. In math, singular may refer to more than one, and plural may refer to only
one.
Class Question: Conjecture: There exist elements of {1,2,3} in {2,4,6,8,10}.
Answer: Yes, even though there is only one, since we disregard plurals. 

Student Difficulties.  Generalizations can have implicitly quantified variables, so
some students fail to note that the negations have a “there exists”. For example, the
problem: State the negation of "x  > 25 => x > 5," might yield the answer, "x  > 252 2

and x # 5," with the quantifier incorrectly omitted.
A hard problem could be: Give the negation of “For all å > 0 there exists ä >

0 such that 0 < |x-c| < ä implies |f(x) - L| < å.” Even good students commonly forget
to quantify the "x" in the negation, since it is not explicit in the original sentence.
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Warning.  We often write generalizations without an explicit “for all.” That’s okay.
But students who omit “there exists” (or some synonym) are omitting something
important. We recommend you consider the omission of “there exists” as an
important error. On page 108, we entreat them to “Never omit there exists” if they
mean "there exists."

Syntax and Nested Quantifiers.  Syntax is that part of grammar that concerns how
word order affects meaning. Nested quantifiers are a case in point. As an example
you could use some set S, say S = [0, 1), and consider all permutations of sentences
like these:

Class example: Let S = [0, 1).
Consider all combinations of "there exists" and "for all" and >, <, $ and #.
e.g.   For all x 0 S, there exists y 0 S such that y > x.   [True.]
The next sentence uses the same words but changing the order changes the truth
value. 
        There exists y 0 S such that for all x 0 S, y > x.   [False.]

For all x 0 S, there exists y 0 S such that y < x.   [False.]
There exists y 0 S such that for all x 0 S, y # x. [True.]
[Four more.]

Toward Calculus: Calculus proofs have many existence statements. Here is a good
statement to begin with because it is simpler than most:  

Let f(x) = x . There exists h such that if 3 < x < h, then f(x) < 10.  2

This is a nice example (there are many) of first proposing a candidate and
then showing it works.  One candidate that would work is 3.1.  3.5 would not work.

A Teaching Idea: "Tell me what to write."  We are beginning to do proofs. If you
ask students about steps in class, often the answers are vague–so vague you cannot
be sure the student is thinking about it correctly. Rather than accept a vague answer
that has seeds of a good idea and finish the good idea correctly ourselves, we
sometimes say "What would you write?" or "Tell me what to write," when we are
transcribing it to the board. This forces the students learn to express themselves
clearly. 

For example, in 2.2 B41-4 there are two statements which we could prove or
disprove. Even it the student merely answers "true" or "false" we can ask "Why?"
(which is approaching a proof). Then, if we decide to have them prove their answer,
in one case they will prove it false with a negation. "What is the negation?" If the
answer is too vague, you can say, "What would you write?"
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Section 2.3.  Reading Theorems and Definitions. It is time for students to
master placeholders. Theorem 1 is a good lesson, addressed further in problems B3-
B6.  

Placeholders are a critical concept for reading theorems. Example 2, on the
Quadratic Formula, is an excellent lesson. Here are problems with increasing degrees
of difficulty.  
1)  3x  + 5x - 10 = 0.    2

2)  -6x - 4x  = 30 [a, b, and c are not left to right.]  2

3)  2x  + kx - 8 = 0.     [A different letter.]2

[They are easy up through number 3.]
4)  dx  + px = k. [All different letters]2

5)  bx  + 2cx + d = 0. [The same letters in different places.]2

6)  Solve for p:  2p  + dp = 20.  [Solving for something other than "x"]2

7)  Solve for y:  2xy + 3y  + 2x = 50. [Solving for something other than "x", even2

though there is an "x" in it.]
Point out how place (in an equation expressing operations) is the key idea,

not the particular letter holding the place.

The key idea to reading definitions is that Logic applies to sentences, not
words. Therefore, we prefer to define sentences containing vocabulary words, not
just the words themselves. A word needs a context, which a sentence provides. Thus,
when it comes time to apply logic to mathematical sentences containing vocabulary
words (as in proofs), we do not replace just the vocabulary words with their
definitions, rather we replace entire sentences with their definitions. We invented
the term “sentence-form definition” (Definition 2.3.4, page 124) for definitions that
define entire sentences by sentences expressed in more primitive terms. Its use is
illustrated in Figure 4, page 127. Many proofs use the idea of Figure 4. 

Example 19 is a very illuminating example. The ability to replace something
that is not understood, such as n*, with something equivalent which is understood,
is a major part of fluency in Mathematics. If you put up, in a pseudo-quiz
atmosphere, 
“Definition: n* = n/2 if n is even and n* = 3n if n is odd. Solve for n in n* =
(10*)(5*),” 
some students will read the odd-looking equation to be solved and stop dead. When
we wander by and offer aid, they may well ask, “What's n*?”  

Of course, that is the point of defining n*. It tells you 10* and 5* and, even,
n*. If they would have the courage to replace 10* with 10/2 = 5 (because 10 is even),
they would be part way through. Some students do not see "=" as permitting
replacement. In many cases, it is just a symbol in the middle of a problem to do. The
definition of n* with its "=" sign does not seem to trigger the thought that we can
replace the unfamiliar n*, 10*, and 5* with more familiar expressions.
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Many students look at the question “Solve for n in n* = (10*)(5*),” find 10*
and 5*, multiply them, and stop. Finding a number, any number, is so satisfying, that
they don’t replace the whole equation to get “n* = 75.”  So, they don’t continue on
to solve for n (150 or 25). Again, we wish they would replace things properly, not
just do operations. 

Another example: Let x# = 2x if x < 4 and x# = (x + 1)/3  if x $ 4. 
Solve for x: x# = (1.5#)(5#)
There are two answers.
Here is another:
Definition:  x@y = 2x - y.  Solve for x: 20@x = (2@1)(3@2).

This takes a real understanding of placeholders because the “x” is in a different place.

Student Difficulties. Some students have trouble seeing the three (3) sentences in
"A iff B". When they say “it” in class you need to discover which “it” they have in
mind. Sometimes “it” is "A", sometimes "B", and sometimes "A iff B". 

For example:

S d T iff     if x 0 S, then x 0 T.
 the sentence being defined its definition
|----------------the definition in sentence-form -----------|

It is possible to use notation to give definitions that do not appear to define
sentences. For example, consider Definition 1.2.9B (page 16) of set intersection:
"S 1 T = {x|x 0 S and x 0 T}." That definition is correct and fine, but, a set is
determined by its members. So that is only abbreviated way of telling us when "x 0
S 1 T" is true. You can't prove anything about the intersection of sets without first
exhibiting a sentence with the connectives displayed. If you think you can, it is
because you are so fluent you don't even notice the translation. Students need to make
the translation step explicit.

Students are warned (Example 2.3.12, page 125) that many authors (even of
high level texts) use “if” in definitions when the really mean “iff.” For example, “An
integer is even if it is divisible by 2.” For another, “b is a bound of S if, for all x 0 S,
|x| # 12.” Both of these are technically incomplete for lacking the “only if”. 

What not to Memorize. "Interior point" is a term in Definition 2.3.21. It merely
serves as a moderately complex term to use as an example (which could be skipped)
of how a definition works. (Some students erroneously think they must memorize it
because it is in the text.) They are to learn how definitions state what they state, not
just what they state. This section is about the requirements of definitions in general,
not about particular definitions.

Aside. A proof that "2 is not an interior point of [2, 3]" uses a remarkable amount of
logic we have studied. You can easily skip the "interior point" example entirely, but
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if you do it, consider discussing all the logic in this negation. First you need to
convert the English version to the version with letters and quantifiers. Then you need
to negate an existence statement "There exist a and b such that 2 0 (a , b) d [2, 3]"
to get "For all a and b, 2 ó(a, b) or (a, b) ç [2, 3]" (students often do not see the
"and" in "2 0 (a , b) d [2, 3]"), which by the Theorem on "or" is replaced with
"For all a and b, if 2 0(a, b) then (a, b) ç [2, 3]" or with 
"For all a and b, if (a, b) d [2, 3], then 2 ó(a, b)." 
The proof will likely address one of these logical alternatives.   

Advanced Question about existence: Ask the class to create a definition of “local
maximum” giving them hints from pictures. Let them find the existence part (most
won't). 
f(x) has a local maximum at c iff there exists ä > 0 such that if x 0 (c - ä, c + ä), then
f(x) # f(c).

Students must have the concept that two sentences can be equivalent (“sentence
synonyms”), that is, say the same thing without appearing exactly the same. So, for
2.3, students must:
1) be willing to replace one sentence with another, equivalent, sentence
2) see unfamiliar terms in their entire context, that is, in a sentence.

   [We prefer not to define just words, rather sentences with the words]
3) If they are uncomfortable with a term, throw out the whole sentence with it

and replace the sentence with another without the term.

Section 2.4.  Equivalence. They can do this. This section is short.
Note how the plurals and the words all and any express generalizations, and

the has and is may indicate existence statements. 
The discussion in the subsection about "The Misuse of Or" is important.

Later, Section 4.1, page 230, the “bad proof” for Conjecture 19B gives a simple
example that deceives many students.  

Another example: “|x| > 5 implies x > 5 or x < -5,” which is not the same as
“|x| > 5 implies x > 5" or “|x| > 5 implies x < -5.” You cannot put the “for all” which
is outside the first version on each of the two parts of the second. “or” and “for all”
do not distribute like that. 

Do not mention this logical equivalence in class, but if a students brings it up,
you can be prepared. A truth table would show  
A => (B or C) is LE  (A => B) or (A => C). This is a misleading logical equivalence
they should not learn because it is too easy to misuse with generalizations.

There is nothing wrong with using
"For all x, {(A(x) => B(x)) or (A(x) => C(x))}."
The problem comes when we put the "for all x" on each part. “For all x” does not
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distribute across the “or”, as we showed with examples in the text and above.

Another (counter) example: R d S c T does not imply R d S or R d T. The “for all x”
does not move past the “or”. All the logical equivalences in the text do not have this
problem. 

Point out that “equivalent” is not the same as “logically equivalent”.  Yes,
“logically equivalent” implies “equivalent,” but sentences can be equivalent for other
reasons besides logical equivalence. Sentences that are logically equivalent are
equivalent solely because of the arrangement of the components and connectives, not
because of meaning.

Section 2.5.  Rational Numbers and Form.  
“x is rational” is an implicit existence statement. This section introduces

existence proofs. Many of the sentences are complex enough that they can be
rearranged using our logical equivalences, so there is a lot of focus on the form of
conjectures.

Chapter 3.  Proofs.  Possible examples for  lessons are given below. First we
comment on the homework and the pedagogy.

Homework. Many conjectures in the text are unresolved and some theorems are not
proved. Their resolutions and proofs will be requested in "B" problems of the same
number. For example, the resolution of Conjecture 9 will be in problem B9.

Lecture Preparation. From here on through the rest of the course it is possible to
conduct most classes with relatively little lecture preparation. You can just have
the students do the next few proofs and unresolved conjectures. We recommend at
least discussing the terms and doing of few of the given proofs to give the students
the flavor of what they are to do, but it is easy to actively involve the students in the
work. 

Pedagogy. Why do We do Inequalities First?  Proofs have two components, logic
and “prior results.”  For a result to be “prior” it must be known prior to the result we
are attempting to prove. By doing proofs with inequalities we are able to clearly list
all the prior results and ask students to cite prior results. We do not need to refer to
things students may or may not know from other courses. Also, the subject of
inequalities has just the right mix of easy and not-quite-so-easy proofs. 
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Furthermore, Section 3.2 on absolute values has inequality results that are
important in calculus, and not all of them are obvious. When teaching about proof,
if students already know the results, it can be hard to get them to focus on the
justification. By using an subject area that is both important and somewhat complex,
we can put the focus on justification and truth.  Examples 3.2.2 through 9
demonstrate that truth is not always obvious. Some of the conjectures are false!    

Examples precede theory. The many examples in Sections 3.1 and 3.2 explain
a lot. Section 3.3 gives the theory. Section 3.4 discusses indirect proofs by
contradiction or contrapositive, and Section 3.5 does mathematical induction. 

Section 3.6, “Bad Proofs,” reproduces common mistakes students make and
asks them to identify what went wrong. 

Section 3.1.  Inequalities.  This section begins with a definition of proof. It
discusses the requirements. It gives a few simple proofs.

Many texts that discuss how to do proofs fail to state what a “proof” is. (We
find this amazing, but true.) We define proof. We want the students to be able to
write a proof; it only seems fair to tell them what it is we am asking them to create.

The key to the concept of proof is its two parts:

form (logic) and prior results.

They have been studying form explicitly ever since Chapter 1. The new part is to get
them to respect the role of prior results. That is, there may be steps that students
would like to use that are true but not legal; steps must be justified by prior results.
The “list” approach (pp. 160, 182) is helpful in this regard.

This is why inequalities are such a great place to begin– we can list all the
prior results.  

One difficulty with good math students is to get them to distinguish “true”
and “prior.” A sequence of true statements from which we can deduce the result we
want is not a proof unless the steps are prior results. 

We introduce the idea of "fixing" a conjecture that is false. The idea is to state
something similar that is true, and then prove it. If you put up false conjectures,
students will often notice that they are true if some additional conditions hold. Have
them learn how to state results by fixing false conjectures. Example 3 is good. 

This section leads smoothly into Section 3.2 on absolute values. 

Lesson plan.  This works best if you have lots of board space so you can watch and
help students (in pairs or threes) at the board. Beginning in Chapter 3, we would want
to have a classroom with lots of board space. 
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Rapidly lecture on proof, through Definition 3. Slow down and do Theorem
4, noting the references back to prior results. Do Corollary 5.  
 Let them try to prove the first part of Theorem 7. 

Do 8A for them (They are not yet ready to play by the rules, so you can use
this one to show them how to carefully reference prior results.)

Let them work through 8Bff (ask them to not look at the given proofs).
Interrupt at any time. 

Ask them to continue with Conjecture 9 and Theorem 10. 
If you have time, consider have students evaluate the arguments for Example

5 and "another argument" for Theorem 16. (These are exercises B17 and B16.)  We
will discuss "bad proofs" latter in Section 3.6, but it is good to get students to judge
arguments already. Many have trouble making decisions. "Is this step okay or not?"

Proofs are not unique. For example, here is an
Alternative proof to Theorem 7: a < b iff b - a > 0 by D3

iff (-a) - (-b) > 0 by PR0
iff -a > -b by D3.

Alternative proof to Theorem 8I "a > 0 => 1/a > 0.
   a > 0 => 1/a � 0 => [by 8F] (1/a)  > 0 => a(1/a)  > 0 [by A1C] => 1/a > 0 [PR0] 2  2



Proof:  Thou Shalt Not!   (Proof in higher mathematics)
by Warren Esty

To prove a result

1) Do not Begin your proof with the result itself. (It is not prior.)
[However, you may note it is logically equivalent to some other formulation,

and that you intend to prove that second formulation instead.]

The statement of the result you wish to prove probably has some letters [For
example, S or f ]. Your proof may use those given letters. 

2)  Do not Use other, new, letters unless 
i) they are representative of all of their kind, by definition (as a representative

case) (Often introduced with the word Let, for example, "Let å > 0."), or
ii)  known to exist by some prior result (in which case you write "There exists

... by Theorem x.x), or
iii) newly (and clearly) defined in terms of given things (for example,

"Choose ä = å/5" after å has been given).  

New letters that appear in an argument they must be clearly defined or quantified, or
else the argument might go wrong at that stage. Be careful with the existence and
generalization of new letters. 

3)  Do not "Let" a letter have a property without justification that it really could have
that property.
        [When we, for example, "Let x be in S," the letter "x" has not been previously
used and is not given in the problem. It is a name for an arbitrary member of S. That
type of "Let" is legal. However, if f is given by f(x) = x , we cannot "Let f(x)+2 = 1." 2

We don't know there exists such an x (and there is not). "Letting" a new letter have
two properties at once is illegal unless you can cite a reason that there really exists
such a thing.]

4)  Do not Use the same letter for two different things in the same proof.
5)  Do not Use true assertions that are not clearly prior.
    (Non-trivial assertions must be from our list of prior results. Truth is not enough.
You are not allowed to use assertions just because they are true. Of course, much-
lower level results can be used without citing them. If you don't know if some result
you want to use is really prior, label it a "claim".)
6)  Do not Use a theorem to prove itself.
7)  Do not Omit “there exists” when it is meant.
8)  Do not Use “=” to connect things that are not really =.  
9)  Do not Fail to use “=” if you really mean =.
10)  Do not Construct cases instead of using general representative cases (when a
result is supposed to hold in general).
11)  Do not Give counterexamples which fail to give values to all the letters.
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Section 3.2.  Absolute Values. Don’t think absolute values are easy. They are
not. 

We use many conjectures to force the students to think critically. We lecture
less and have the students make more decisions and give more justifications. 

If you are a fan of group work, this is a good section to ask for, or at least
allow, group work. We send students in groups to the board. 

If you want to do calculus applications of absolute values and nested
quantifiers, some are the next section (pages 184-189 and B55ff on page 195). Many
are in Chapter 9, “Calculus” (which we never get to in one semester). 

Lesson Plan: Ask the conjectures in Examples 2 through 9 aloud in class. Request
specific counterexamples to the false ones. Do a bit of Theorem 2 through 4, making
sure students understand Theorem 4. Them turn the class loose on 6 through the end,
resolving them one after the other. Assign as homework a selection that depends
upon how far they got, but include Theorem 7, the Triangle Inequality, even if it was
done in class. Conjecture 14 is hard. 

Comment on the value of doing scratch work on a different piece of
paper. Too many student expect proofs should be like algorithmic computations
where everything you write is correct, useful, and in the right order. However, in
order to find a proof we might write far more than we use and we might have to
select the good parts and reorganize what we wrote. 

Absolute values make a great topic. You will see students using logic
incorrectly and have a chance to fix it. For example, some begin with the result to be
proved and proceed to deduce a final sentence like “2xy #|2xy|,” which is true.
However, deducing a true sentence does not prove that the initial sentence was true.
You can’t begin with the thing to be proved!

Assign B39, which is a deceptive bad proof. Many students do not find the
real error, which is in Step 4. There is a lesson here about doing two steps at once.
From Step 2 to Step 3 is possible, but Step 4 applies the triangle inequality in a
deceptive manner. So, skipping steps can be okay or not. At this stage, we
recommend they not skip steps, at least until their errors are extremely rare. 

Conjecture: |x + a| < b => x < b + a.   [False: x = 10, a = -10, and b = 1.]
 
Logic in Proofs.  You might lecture on  this or skip it. Skip it unless you have lots
of time. It illustrates the form of proofs when the statement to be proved has a
complicated form. 

There is a lot of logic in proofs that good mathematicians hardly notice, but
beginning students may need to have explained. Here is an example where the proof
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organization utilizes a lot of logic from Chapter 1. 

Correcting Conjecture 16: "|x| = c iff x = c or x = -c" (which was false) leads to the
fix (Conjecture 17 and Exercise B17, which could be proved early in the section): 

Theorem: "|x| = c iff c $ 0 and (x = c or x = -c)."
How would your students know the logical organization for a proof?
You can lecture on this form.

We ask them to "Look at the form":
                                (1)   iff   [(2)  and (  (3)  or   (4)  )]
We expect two sub-proofs by "iff" (Theorem 1.4.5).
To show the "=>" half of the "iff", show, by "Two Conclusions" (Theorem 1.4.6) two
sub-proofs:
            (1) => (2)
     and (1) => ((3) or (4))
where the second is already done in the text, below Conjecture 16, using the
definition of absolute values with the two cases x $0 and x < 0.

To show the other half, <=, of the "iff":    [(2)  and  ((3) or (4))]  => (1)
Expect "Cases" because of the "or" (Theorem 1.4.8).
by the Distributive Law (Theorem 1.5.15)
     [((2) and (3)) or ((2) and (4))] => (1)
by Cases, show
    (2) and (3) => (1)
and
    (2) and (4) => (1).
So, the proof of this one theorem has several parts, each of which does not address
the whole. 

This may be an "obvious" organization to some students, but you may have
quite a few to whom this is not obvious. 

Section 3.3.  The Theory of Proofs. This section discusses the difference
between and argument and a proof. 

Why can we assume the hypothesis is true?  
The term “representative case” proof (Definition 3.3.4, page 184) is very

useful. 
Students learn to appreciate the difference between “prove” and “deduce”

(page 186). 
Some of the proofs have nested quantifiers as in calculus (Example 9 can be

altered to make similar new examples). 

Comment: 
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Question: To prove “(A => B) => (C => D)” can we assume A is true? No. We may
assume C is true, but not A. A is not a hypothesis, rather “A => B” is. That
conditional can be true even if A is false. So we cannot assume A is true. 

The application of this thought is widespread.  Many examples using terms
like increasing or one-to-one have conditionals in both the hypothesis and
conclusion. 
e.g.  Conjecture: “If gBf is one-to-one, then g is one to one.” [Starting in the wrong
place is misleading. See Conjecture 5.1.9 for a great example of bad rasoning.]

Section 3.4.  Proofs by Contradiction or Contrapositive. Proofs by
contradiction and proof by contrapositive are discussed and compared. You might
note that many proofs said to be “by contradiction” are really “by contrapositive.”

A Difficulty. When you teach and grade proofs, there is always the problem that
some students don’t pay enough attention to what steps are legal (They might write
down anything that comes to mind, prior or not). Sections 3.1 and 3.2 train students
to care about what is prior and what is not. However, in Section 3.4 and later
sections, we need common sense. 

We need to assume that simple results are on the list prior to complicated
results, even if they have not be explicitly stated. For example, suppose you wish to
prove:
Conjecture: If x > 0 and y > 0, then %(x+y) < %x + %y.  
The proof might use: Theorem:  If x > 0, then %x > 0. 
A few students (not many) would wonder what they can cite to show that. It is not
given in the text. We tell them that the theorem is well below the level of the
conjecture and we will accept it without proof. Using our term, they may “claim” it
(2.2 Definition 10, page 110).  However, in the right context we might ask them to
prove the theorem, in which case it would have to be proven from results even more
basic than the theorem itself. It would be proven from the definition of “square root”.

Prove Conjecture 2.3.17 (B45 in 2.3, and B24 in 3.4):  If S is bounded, then S  is not. c

Suppose, for contradiction, S is bounded and S  is bounded. c

Then S c S   would be bounded by Theorem 2.3.16, but S c S  = R which is not c  c

bounded, so we get a contradiction and the supposition is false. 

HW:  B4 is good. With a little work, B5 follows from it, but when we assign both on
the same HW, many students do not notice the connection. 

B8 is good (x > 0 and y > 0 and x  + y  = 1 implies x + y > 1) and B23 2  2

follows from it. When we assign both on the same HW, many students don't notice
the connection. 
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A Lesson about Properties and Stating Math. Here is a possible lesson about
properties, designed to help students learn to state mathematics and conceptualize
terms. Here is most of class one day, done after 3.4 but it could be inserted anywhere
after 3.2. The text does not suggest or require you do this. 

I stated this definition of "interior point" on the board: "p is an interior point
of S iff there exist a and b such that p 0 (a, b) d S ". I drew a number line picture to
explain it. 

I asked them to get out a piece of paper and state conjectures about interior
point that might be true or false. Emphasis on "state." I think most had no idea what
to do. I don't think I waited a full 5 minutes, but then I wrote on the board:
"membership, subset, intersection, union, complement" and asked if anyone had a
sentence about membership (the first term in my list).
1) “If S has an interior point, then S has at least 3 members.” [The actual first
contribution. Unexpected, but true. I did not determine its truth, just moved on to get
more statements.]

I waited for more, but didn't get a courageous student, so I put up
2) “If p is an interior point of S, then p is in S.” 
After a bit more waiting, I asked for its converse and got it.
3) [the converse]
Then I asked for inverses
4) “If p is not an interior point of S, then p is not in S. 
5) [the inverse of (3)]
I asked whether they were true. [I ask several students and often get conflicting
answers/guesses.]

Then, looking at my list, I requested a statement with subset:
6)  [I waited a while (no one answered) before I wrote the first hypothesis of this and
waited for someone to fill in the rest] “If p is an interior point of S and S d T, then p
is an interior point of T.”

I asked for a statement with intersection
6) “If p is an interior point of S and p is an interior point of T, then p is an interior
point of S 1 T.”
7)  Its converse
8&9) Ditto for union. 
Back to number (1), we easily revised that to an infinite number of points. [I mention
statements with complement later.] We could have done its converse, but didn’t.

After we finished those, I left them up and I put up the definition of
accumulation point: "p is an accumulation point of S iff for each å > 0 there exists x
in S such that 0 < |x - p| < å."

This is harder, so I explained two examples, 1 is an accumulation point of
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(0, 1) and 2 is not an accumulation point of {1, 2, 3}.
Then we went through the existing (2) through (9) again with the new term

replacing the old term, then (1), and its contrapositive, (10), and at the end one more
11) “If p is an accumulation point of S union T, then p is an accumulation point of S
or p is an accumulation point of T.” ["or" instead of "and"]
[There is a similar one for “interior point” with a different truth value.]

“Accumulation point” is not an easy term so students often guess wrong about
the truth of the conjectures. 
   That did not take all hour, but most.

It was lots of fun and, I hope, illuminating about stating mathematical
properties of concepts. Lesson: If a term refers to sets and numbers, its properties
may have to do with how it combines with set-theory terms.

I didn't get, or state, in either context:  Conjecture: “If p is an xx point of S,
then p is not an xx point of S .”  [The answers differ for the two terms.] c

There are many other possibilities that no one volunteered and I did not bring
up: “Every point in (c, d) is an interior point of (c, d).”  “The set of interior points of
[c, d] is (c, d).” 

No one mentioned “p is an interior point of S iff there exists å > 0 such that
(p-å, p+å) d S,” which is a result mentioned earlier in 2.3. 

^^^^^^^^
Some harder problems: 
Prove: “n  + kn + c is divisible by 3 for all n” cannot be true, regardless of k and c. 2

If it were true for some n, then the next case would concern
(n+1)  + k(n+1) + c = n  + 2n + 1 + kn + k + c 2  2

= n  + kn + c + 2n + 1 + k. 2

The difference would be 2n+1 + k. Is this divisible by 3?
If this difference is divisible by 3, then the next difference would be 2(n+1) + 1 + k
which cannot also be divisible by 3, since it differs by 2 from the previous difference.

Prove: “2n  + kn + c is divisible by 3 for all n” cannot be true, regardless of k and c. 2

The next terms would differ by 2(2n+1) + k = 4n+2+k.
If this difference is divisible by 3, then the next difference 
would be 2(2(n+1)+1) + k

= 4n + 6 + k , which differs by 4 from the previous difference, so it cannot
also be divisible by 3. 

Section 3.5.  Mathematical Induction. Induction proofs are very difficult for
students who have not been trained to respect the difference between a conditional
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sentence, its hypotheses, and its conclusion. The induction theorem has a conditional
sentence as a hypothesis ("For all n, S(n) => S(n+1)"). To untrained students, the
hypothesis of that conditional looks a lot like what they are trying to prove ("For all
n, S(n)"). This is confusing.

Those two sentences are quite different. Furthermore, we do not assume "For
all n, S(n) => S(n+1)" – we prove it, in order to satisfy a hypothesis of the induction
theorem. When the two hypotheses are shown to be satisfied, the desired conclusion
is proved. 

The text has more than enough examples. You can use homework problems.

Example which can be done two ways:  1+4+7+...(3n-2) = n(3n-1)/2.
One way:  The usual induction.  Ask students for the general term before giving it.
Another way:  After having done 1+2+3+...+n, the above sequence is three times it
minus a sequence of 2's.

1 2 n 1 2 nConjecture:   (1-a )(1-a )...(1-a ) $ 1- a - a  -...- a .   [This is B32]
Example:  (.99)(.95) = .9405 > 1-.01-.05 = .94.  It holds in this case.  Does it always
hold?

There are recursive definitions (Examples 2 and 4, B7-11). Here is an easy recursion

1 n+1 n nexample: Let a  = 2 and a  = (2a  + 5)/4. Claim: a  < 3 for all n. [Actually, it is <

n2.5, but 3 is easy and true] and {a } is increasing.

A very basic induction:  Here is a given theorem, a prior result for this problem: If
two sets S and T are open, then S 1 T is open.
Prove by induction this following theorem:  The intersection of any finite number of
open sets is open. 
[The difficulty is in picking a good notation and making the role of "n" clear. Good
students can do it easily, but your weaker students may not be able to state it well.]

There are additional similar examples that use union and that use closed. 

Error on the base case: B47 may be deceptive. It is the base case which is
misrepresented. 

Comment: The proof of Bernoulli's Inequality, Theorem 3, has some steps missing
the reasons. Exercise A1 asks for the reasons. Many students do not know the
reasons, or, at least, do not clearly recognize that the two "Why?" questions have
non-trivial reasons. The first needs the "x $ -1" hypothesis and the second uses "nx 2

$ 0."
At this stage, many students do not check every "=" to make sure it is true.

They just read or skim them. They do not check "$" to be sure it goes the right
direction. They may be aware of what was "done" to produce the step (like
multiplying an inequality by 1+x), but not whether doing it was justified (it is okay
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only if 1+x $ 0, so the hypothesis "x $-1" is inserted in the theorem and used in the
proof).

Possible in-class work: B3 is harder than it looks. B17, B31, B35.

Additional Induction problems: .

Any n $ 2 can be written in the form n = 2a + 3b, where a $ 0 and b $0. 

, for n $2.

Easy: 2n + 1 < 2  for n $3. n

This might serve as a quiz/exam problem to see if they know how to format an
induction proof. 

A hard (tricky) one, because the formulation is not typical: .

By induction, we could prove the left side is n/(n+1), which is less than 1. However,
the given version does not have “n” on the right and is not immediately suitable for
induction. 

Section 3.6. Bad Proofs.  In class we have had good results by asking students
to “Judge every line. Put a check on it if it is okay, and an X if it is not okay.  Read
it line by line.” We may have them “Check it with your neighbor.” 

Many students hesitate to place any checks or X’s. However, they must learn
to decide whether sentences are true or false, and whether sentences follow logically
or do not follow logically. These exercises help. 

Students, perhaps in pairs, can do these in class: Conjecture 3 and Argument 4.
Conjecture 6 and Argument 7. Conjecture 10 and Arguments 11-12.  We ask for
checks on every line that is okay and an X where it goes wrong. We ask them to
analyze lines sequentially. Each line is either okay or not, one after another.
Conjecture 17 and Argument 18.  Conjecture 19 and Arguments 20-21.

Notes: In Argument 18, line 6 does not follow. We ask what would allow it to
follow.
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Related (false) conjectures are: x  # y  => x # y.  x # c  =>  %x # c.  2  2  2

Conjecture 17 can be fixed with both a and b $ 0. The left sides does not even make
sense if one is negative and the other positive. 
Argument 21 is almost okay, but line 4 does not follow from line 3. It would, if lines
2 and 3 had |a| instead of just a, which would have been legal. However, as stated,
the right side of line 3 might have been increased by attaching absolute values to a.,
making line 4 not follow.

Good HW, or in-class work: B26, 28, 31. 

B41 is a bad proof. However, it may be hard to find the exact error. Going from Case
1 to Case 2 is misrepresented. If max(a, b) = 2 = n+1, we cannot assume both a -1and
b-1 are natural numbers that fit case n (= 1), because a = 1 and b = 2 would have a-1
= 0 which is not a natural number. A very subtle mistake!

Part 2:  Practice. Chapters 4 through 9. The text offers a lot of flexibility in
Chapters 4 through 9. At Montana State and Stonehill we go straight through and
finish one semester with Section 5.2 or 5.3. If you want to skip some sections and
cover some later material, say, Number Theory in Chapter 6, the first page of the
chapter tells which earlier sections are necessary prerequisites. 

We think it is time for the students to do much of the work. If you lecture, you
could “cover” the material rapidly, but covering the material is not the same as the
students learning it. If have the students do the work, each section can take longer,
or much longer. 

About Chapters 4 through 9.
Class Preparation and Homework. 

In any given section, perhaps define a term and select a corresponding
theorem to prove, as an example of a proof in that subject. You might talk them
through a proof or two with the book open. Then ask some of the easiest ones aloud
(and there are some that are very straightforward). 

Then have them work through the theorems and conjectures, one after
another. It is very easy, and remarkably effective, to conduct class by having students
do much of the work, possibly individually but preferably in small groups at the
board.  You can help individuals, groups, or the whole class, as appropriate. Then,
depending upon how far they get and how much help they need, the next homework
assignment can be to resolve some remaining conjectures, or additional problems
from the exercises.

In Chapter 4 and following chapters the exposition has sufficiently many
theorems and conjectures to conduct class just by going through them, one after the
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other.

The End of One Semester.  At Montana State University and at Stonehill College
the 3-credit sophomore-level course covers through 5.2 or 5.3 (5.3 on Cardinality is
interesting.)  At MSU we have had a subsequent course that resumes with Number
Theory.

The text offers a lot of flexibility in Chapters 5 through 9. You could skip
Chapter 5. You could continue immediately with Number Theory (Chapter 6),
Topology (Chapter 8), or Calculus (Chapter 9). Only Chapter 7, Group Theory, has
a prerequisite from an earlier chapter. It requires some number theory about modular
arithmetic from Chapter 6.

Chapter 4. Set Theory

Chapter 4.1 is excellent for work with alternative forms. After 4.1, Section
4.2 is useful in Real Analysis (a.k.a. Advanced Calculus), but almost any chapter
could follow next. 

Lesson Plan for 4.1: You can ask class to identify the  results from logic which
parallel the theorems in 4.1. “What is the logic result corresponding to Theorem
1A?” 2A? 3?  etc.

Each of the early results in 4.1 is a perfect parallel to a tautology,
contradiction, or a logical equivalence.

Prove Conjecture 11 from the definitions. 
Reconsider Conjecture 11 and give advice about proofs. The organization of

proofs about subset (and many other terms) often follows from this general advice
1) identify the conclusion (its concept definition)
2) translate (if appropriate), and
3) reorganize, using a logical equivalence, if appropriate. 

However, if the term is new, such as upper bound or bounded above or least
upper bound in Section 4.2, the concept image may need substantial work before the
ideas for a proof can come. The above advice still holds. With practice, students will
eventually automatically do those steps.

The (bad) “proof” for 4.1, Conjecture 19B is an excellent example of “the
misuse of or” which was first discussed in Section 2.4, page 145. Be sure the
students understand this. 

Continue with students working on the following conjectures. Assign
homework depending upon how far they got. 
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Additional problem:  Conjecture: S d T or R d T implies S c R d T.

Section 4.2 has much more in it than 4.1. The concept of supremum is not trivial.
Again, the students can do much of the work. 

4.2.  Homework B1 discusses a difference between Math and English. “Upper
bound” has “upper” in a position that would make it an adjective in English, but it
is not an adjective modifying a noun in Math. In Math, it is part of a two-word noun.

4.2. Argument 34A and Argument 34B are good exercises. Some accept line 5 of
34A when they should not. Most students accept line two of 34B when they should
not. Here are some things "Thou Shalt Not" do in proofs (next page). You might let
student assemble their own list of advice that works. 

Possible Additional problems:

4.2. After Conjecture 30.  Possible fix with an additional hypothesis: “If M is an
upper bound of S and ...[continue as Conjecture 30] and then reread Argument 30A.
Would it be a proof?   [Yes.]

4.2, right after Conjecture 36:  Conjecture 36B: If f(x) $ 0 and g(x) $ 0 for all x, then
sup{f(x)g(x)} = sup{f(x)}sup{g(x)}.

4.2. Theorem 37 has “=”. It is easy to prove one way, #, but not so easy to prove the
other. 

4.2.   T   F    sup(S c T) # sup(S) + sup(T).

4.2.   T   F    S c T 0 P(S) c P(T).      [P denotes the power set.]

Chapter 5. One-to-One and Onto.  Section 5.1 has two wonderful terms, one-to-one
and onto. They have not seen many terms defined with existence statements, so onto is hard
at first.

Chapter 5 has two wonderful examples of bad proofs. Be sure to cover the argument for 5.1
Conjecture 9 (pages 258-259) and 5.2 Conjecture 6 (page 265). The point is, when a
conjecture is supposed to hold “for all” cases, use a general, fully representative, case. Do
not construct cases. 

Note: In Section 5.1 on one-to-one and onto, Conjecture 9 in Section 5.1 is false. The
argument for it is very deceptive and illustrative of an extremely important point: Start in
the right place!  Be sure your students understand the subtle error in the proof. This is
strong motivation to begin with the hypothesis in the conclusion, which we emphasize.
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Beginning elsewhere often leads to errors.

1 2The proof was supposed to prove something “for all b  and b ,” but it did not start

1 2there. It did not address all. Each of the steps would work if there existed a  and a  such that
line 2 was possible (which could be fixed by assuming f is onto), but that is not known. A

1 2principle is: Do not introduce letters (such as a  and a  in Conjecture 5.1.9) without their
being

1) already given in the problem, or
2) representative of all of their kind, by definition, as a representative case, or
3) known, and asserted, to exist by some prior result, or
4) newly (and clearly) defined in terms of given things  

5.2. Conjecture 6 has a deceptive argument. Be sure to cover it and discuss how to avoid
such mistakes.  

5.2. Conjecture 20A is false but with a simple misleading picture it looks true. This can be
a very good lesson in the value of sticking to concept definitions. Sketch a graph like y =
x  and let W be a set of y-values above the x-axis. Then consider any element, y, of W. 2

There will be an x such that f(x) = y. Then x is in f (W) and y is in f(f (W)). In this example -1  -1

W will be a subset of f(f (W)).  But the "there exists" step is not justified in general without -1

an extra hypothesis: If f is onto, then ... .

Extra, not easy:  Let f:A 6 A and g: A 6 A (all sets are the same, A). 
Resolve the Conjecture: If gBf(x) = x for all x in A, then g is one-to-one.

It is false. Let A = [0, 1], f(x) = x/2 and g(x) = 2x, for x # ½ and 2x - 1 for x > ½.

A student’s bad proof of Conjecture 8: If f(S) d f(T), then S d T.
line 1) Let y 0 f(S). 2) Then y 0 f(T). 3) y = f(x).  4) Then x 0 S and 5) x 0 T.  6) So S d T.

Another deceptive bad proof (of a false concjecture):
Definition: y 0 f(S) iff there exists x 0 S such that y = f(x).

Conj: f(S) 1 f(T) d f(S 1 T)

“Proof”: Let y 0 f(S) 1 f(T) 
then y 0 f(S) and y 0 f(T) 
so there exists x 0 S and x 0 T such that f(x) = y   [by definition of f( )]
so x 0 S 1 T and f(x) = y
so y 0 f(S 1 T).

Chapter 6. Number Theory.  Number theory deferred it to Chapter 6 only because a
few key results, like the Remainder Theorem (6.2.2) are a little long and we wanted our
students to have more exposure to straightforward proofs first. Nevertheless, you could skip
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to Number Theory right after Chapter 3 if you prefer. If your time is limited, Section 6.1
through 6.3 would be enough to give students the flavor of number theory. If you want to
cover group theory, you should cover modular arithmetic in 6.4 as well. Students love the
cryptography section (6.5). It is very real-world and interesting. To do it begin with 6.1 and
go straight through to 6.5.

Additional Problem: If 2 -1 is prime, then n is prime.  n

Chapter 7. Group Theory.  This is like the beginning of an undergraduate course in
Abstract Algebra. This chapter has a lot of material, even if only four sections, and could
take many weeks to cover, or you could fly straight through it faster. 

We would just go straight through the exposition and not introduce additional terms,
but there may be results and terms that interest you that are not covered in the exposition.
The exercises are designed to introduce such terms and give students related problems to
work. So, look in the exercises for more on each topic.

Chapter 8.  Topology.  This is an introduction to the sort of topology used in Advanced
Calculus and Real Analysis. It does not do any more-general topologies. It begins topology
the same way it is begun in many analysis texts. (The definitions of topology can be
organized in several distinct ways. We pick one common way.)

Again, there may be results and terms that interest you that are not covered in the
exposition. The exercises are designed to introduce such terms and give students related
problems to work. So, look in the exercises for more on each topic. 

Chapter 9.  Calculus. This chapter takes a beeline through the main limit and derivative
results of calculus. It closely resembles an "Advanced Calculus" or "Real Analysis" course.

Chapter 9 could directly follow Chapter 3 on proof, but some of the proofs are a bit
tricky and many math majors will take advanced calculus and don't need to see this material
twice. At Montana State University our Mathematics Education majors are unlikely to take
full courses in Number Theory, Group Theory, or Topology, so we put those chapters first
so that they can study them in a second-semester course from the same text.
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Appendix A: Terms from Logic to Omit

Do not bother to read this unless you are familiar with logic from some other text.
This is about names for results from logic.

Unfortunately, many results in logic have more than one name, and most of the
names from a logic course are not illuminating. Furthermore, most of the usual names are
not used (or even known) by regular mathematicians. Thus we have chosen to use
illuminating names, keeping the students and mathematical practice in mind. For our own
curiosity we have compiled a list of alternative names (found in philosophy courses). We
recommend you omit them.

Note: In logic, a “horseshoe” (e) is a symbol for the mathematical "=>". This is very
unfortunate for Mathematics, because the horseshoe points the wrong way for the
correspondence between subset (d) and "if..., then...” (pages 23, 44). We haven't yet had
any students comment on this, and we certainly do not comment on it (Why confuse them?)
but those who have taken logic might find this reversal confusing at first.

The term “hypothesis” is similar in Mathematics and in logic, but not quite identical.
In logic, a “hypothesis” is a conjecture offered as a possible explanation. In Mathematics,
a “hypothesis” is the "A" part in a conditional sentence of form "A => B." If the conditional
is true, the hypothesis may serve as an “explanation,” but the true conditional would not be
have “A” as a “possible explanation,” rather a sufficient condition.

We avoid the “p” and “q” of logic texts; lower-case letters look too much like
numbers

Chapter 1 is about the “Propositional calculus” and Chapter 2 about the “Predicate
calculus.” Neither term is at all illuminating. (What does this have to do with the students'
conception of "calculus"? Who knows what “predicate” means?) 

text usage alternative omitted usages
open sentence  propositional function, predicate
variable indeterminant
"A and B" the conjunction of A and B
"A or B" the disjunction of A and B, alternation, inclusive disjunction
"A => B" implication [this term is misleading, because in English the “implication”

is the conclusion, not the whole sentence. We call 
"A => B" a "conditional sentence."]

"A iff B" biconditional, equivalence [this is misleading without variables. 
How can 2+2 = 4 be equivalent to the Fundamental Theorem of Calculus?
Both are true, so "2+2 = 4 iff FTC" is true, but no real “equivalence” is
expressed.]

conditional sentence implication
hypothesis antecedent, premise
conclusion consequent
contradiction absurdity
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transitivity of "=>" law of syllogism (in logic, a “syllogism” is any statement with two
premises and one conclusion)

Modus Ponens law of detachment, law of the excluded middle
contrapositive transposition
proof by contrapositive Modus Tollens, law of contraposition
proof by contradiction law of conjunctive inference

law of conjunctive simplification
reductio ad absurdum
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