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CHAPTER 9

Conic Sections

Section 9.1. Conic Sections: Parabolas

Curves called conic sections have been extensively studied for over two
thousand years. They include parabolas, circles, ellipses, and hyperbolas (Figures 1A,
B, and C).
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Figure 1A: Two parabolas. Figure 1B: Two ellipses Figure 1C: One hyperbola.

By definition, a conic section is a curve formed as the intersection of a cone and a
plane (Figures 2A, B, and C).
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Figure 2A: A parabolaas Figure 2B: An ellipse as Figure 2C: A hyperbola
a cross section of a cone. a cross section of a cone. as a section of a cone.
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Different types of curves are formed depending upon the angle at which the cone is
cut. Parabolas result when the plane is parallel to the edge of the cone (Figure 2A).
Ellipses result when the plane is tilted to cut only one part of the cone (Figure 2B).
Hyperbolas result when the plane is tilted to cut both parts of the cone (Figure 2C).

Conic sections are not merely mathematical curiosities; they are important
shapes of nature. The Polish astronomer Kepler (1571-1630) discovered that planets
move in ellipses about the sun. Man-made satellites and some comets also move in
elliptical orbits, and some comets move in orbits that form one branch of a hyperbola.
Disregarding friction, projectiles move in parabolic paths. To explain why objects
move in these orbits takes calculus and Newton's law of gravity.

Other applications concern vision and light. In the real world circles are
extremely common. Viewed from an angle, a circle appears elliptical; photographs
and paintings illustrate circles as ellipses. The tip of a shadow of a fixed object (for
example, the tip of a shadow of a pole) describes one branch of a hyperbola as the
day passes (problem B16).

Parabolic, hyperbolic, and elliptical shapes all have remarkable reflective
properties. Satellite dishes, microwave relay towers, telescopes, solar energy
collectors and parabolic microphones utilize parabolic shapes.

By 200 BC the Greeks had, as a purely intellectual exercise, discovered
numerous fascinating properties of conic sections, including the reflective properties.
Ancient results about conic sections are strong support for the argument that pure
research may lead to important discoveries, even if no application is in mind when
the research is undertaken. Centuries passed before the important practical
applications of conic sections were devised.

After straight lines, the next most important curves are these conic sections.
There are alternative ways to define these curves. We will not use the ancient "conic
section" approach. Instead, we will define these curves using two-dimensional
geometric definitions well-suited to algebraic geometry.

Parabolas. We begin with a description of parabolas in geometric terms and then
translate that definition into algebraic notation.

Definition 9.1.1: Let L be a line in the plane and F be a point in the plane not on that
line. The set of points that are equidistant from L and F is called a parabola (Figure
3).

Theline L is called the directrix ("Dih REK tricks") of the parabola and the point
F is called the focus ("FOH kus") of the parabola.
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a point F, and a few points pictured vertically.

equidistant from both.

If we want to express that geometric definition algebraically, we may. For that
we need an axis system. It is most convenient to locate the axis system with the y-
axis through the focus and perpendicular to the directrix, and the origin halfway
(equidistant) between the focus and directrix. Figure 4 pictures the axis-system
vertically as usual.

There are only two other points on the parabola other than the origin that are
easy to find by inspection. The points (-2a, a) [P, in Figure 4] and (2a, a) [P,] are
also on the parabola because they are the same distance from the directrix and the
focus. They are 2a units above the line (measured perpendicular to the line) and 2a
units directly to the side of the focus. The line segment through the focus connecting
P, to P, is called the latus rectum (that is a Latin term) and serves as a description of
how wide the parabola is. The latus rectum is 4a units long -- exactly twice the
distance from focus to directrix.

The other points on the parabola are not so simple to discover. However, using
algebra, we may treat the geometric description of a parabola as a word problem,
build our own formulas, and then set up the equation.

Algebraic Description of a Parabola. To describe the geometric definition in 9.1.1
algebraically we need to express the two distances mentioned. Then we will set the
distances equal to each other.

Let a point be denoted by (x, y). How far is it from the focus (0, a)?

By the distance formula 3.3.2, the distance from (x, y) to (0, @) is (Figure 5)

J(x—0)2+(y—a) = \/x2+y2-—2ay+ a’.
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Points (x, ) on the parabola will be in the top
half of the plane (Figure 5), so the distance from (x,
) to the directrix y = -a is simply y + a.

Now, set these two distances equal and

simplify. * 9
(0. a)

y+a= sz +y?-2ay+a*.

Squaring both sides, I
(y+a)2=f+y2-2ay+a2. """"""""""""" yila T
VH+2ay+ =2+ -2ay+d.
Simplifying, Figure S: Focus (0, a),
directrix y = -q, and a

(9.1.2A) day = x°. point (x, y) on the parabola.

Dividing by 4a, we can isolate y.
Vertical Parabola Centered at the Origin. An
equation of a parabola with focus (0, a) and Parabola
directrix y =-ais

2 y=x/(4a)
9.1.2B ==,
( ) 4a focus: (0, a)
directrix: y=-a
The parabola goes through the origin and the focus vertex: (0, 0)
and directrix are [2a| units apart. g
. L istance from focus
If a is positive, the parabola "opens upward," to directrix: 2a

as parabolas usually do in pictures, for example,
Figures 1A and 4. If a is negative, the focus is
below the directrix and the parabola "opens
downward" (Figure 9).

Example 1. The best-known algebraic description of a parabola is "y =x2." Locate
its focus and directrix.
In9.1.2B, "a" is a parameter which locates the focus and directrix. We are given
that the parabola is "y = x2." In 9.1.2B this is "y = x*/(4a)." So,
y =x*=x*/(4a).
Solving for a, 4a =1 and a = 1/4. Therefore, the focus is (0, 1/4) and the directrix is
y=-1/4.
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Example 2: Find an equation of the parabola with focus (0, 1) and directrix y = -1.
Half way between the line and the focus is the vertex. Here, that point is the
origin, so equation 9.1.2 fits. Since the distance between the focus and the origin is
2a, which is here 2 units, @ = 1. Plugging into Equation 9.1.2B, the equation is
y =x4.

Location Shifts. Ifa parabola is defined geometrically on a "blank page" before the
axis system is laid down, we can choose our axis system to fit the parabola as we did
in Figure 4. Then the algebra is relatively easy.

The resulting formula is 9.1.2B, which has only

one parameter, a.

If the directrix and focus are given on a pre-
existing axis system, the algebra is more
complicated. Nevertheless, any parabola can be
expressed algebraically in terms of location (h k+a)
shifts, scale changes, or rotations of this basic *
parabola. Location shifts and scale changes are
dealt with here exactly as in Section 2.2 on (h k)
composition of functions and the part of Section  ~==~~~"""==== g grommme e
3.3 on circles and ellipses.

First consider parabolas where the axis of
symmetry is still vertical, but the location is
different. It is easy to algebraically shift the
vertex to a new location (Figure 6). For
example, to locate the vertex at (4, k) ["A" and
"k" are the traditional letters used to locate the vertex], we can substitute "x - A" for
"x" and "y - k" for "y" in 9.1.2. The result is immediate.

(x- h)’
4a

Figure 6: A vertical
parabola that "opens
upward" with vertex (4, k).

y-k=

Vertical Parabolas. The equation of the standard geometric form of a parabola with
vertical axis and vertex at (4, k) is

(x-h)’
(9.1.3) y= ik

The directrix is y = k - a and the focus is (4, k + a) (Figure 6).



Example 3: Find the algebraic representation of
a parabola with focus at (5, 7) and directrix
y=1.

Draw a picture (Figure 7).

Since the directrix is horizontal, the axis of
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symmetry will be vertical and the standard
geometric form in 9.1.3 fits. The distance from
the directrix y = 1 to the focus (5, 7) is 6. This
distance is 2a, so @ = 3. The vertex is half way in
between the focus and directrix, so the vertex is
(3, 4). Therefore, the equation is
y=(x-5%12+4

Example 4: Find the focus and directrix of the
parabola with equation "y = x*/8 + x."

Graph it (Figure 8). You should be able to
approximate the answers just by looking at the
graph.

This equation can be manipulated into the
formin 9.1.3, which exhibits the three parameters
h, k, and a. Complete the square (as in Section
3.2) to obtain

y=x/8 +x = (1/8)(x* + 8x)

= (1/8)(* + 8x + 16 - 16)
=(1/8)(x +4)*-2

The algebraic form which exhibits all three-

parameters would be
_(x--9?

22 +-2.

units above the vertex and the directrix is

vvvvvvvvvvvvvvvvvv

Figure 7: A parabola

with focus (5, 7) and
directrix y = 1.

[-10, 10] by [-10, 10].
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Figure 8: y =x%/8 + x.
[-10, 10] by [-10, 10].

V{4, 5)

Soh=-4, k=-2, and a = 2. The focus is 2 /5‘/‘\ ,

horizontal two units below the vertex. Vertex: (-4,

-2). Focus: (-4, 0). Directrix: y=-2-2=-4.

/ 5 F
A vertical parabola is upside down ("opens el

downward") if and only if a is negative.

Example 5: A parabola has vertex (4, 5) and focus

(4, 0) (Figure 9). Find its equation.

The axis of symmetry is vertical, so 9.1.3 fits.

(4,0

Figure 9: A parabola with
vertex (4, 5) and
focus (4, 0).

The directed distance from the vertex to the focus [-10, 10] by [-10, 10].
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is -5 (negative, because the focus is below the vertex) so a = -5. The center (4, 5)
exhibits % and £. The equation is
y=-(x-4)%20+5.

Horizontal Parabolas. The difference between a horizontal graph and a vertical graph
is the difference between "x" and "y". Switch the letters and the role of the axes
switches, so what was vertical becomes horizontal, and vice versa.

An equation of the standard geometric form of a parabola with horizontal axis
and vertex at (A, k) is (switching "x" and "y" in 9.1.3):

- k)?
014 x=Q=B .,
4a
The directrix is x = 4 - a and the focus is (& + a, k) (Figure 10).

Solving 9.1.4 for y,

9.1.5) y=ztJ4a(x-h)+ k.

This is the functional form (with two functions) suitable for graphing horizontal
parabolas with a graphics calculator.

Figure 10: A horizontal parabola. Figure 11: x=)".
Vertex: (h, k). Focus (h+a, k) [-5, 5] by [-5, 5].
Directrix: x=h-a

Example 6: The best-known horizontal parabola is given by x = y* (Figure 11). We
have seen the top half graphed many times as y = vx. Locate its focus and directrix.

This is just Example 1 with the letters switched. In Example 1 the focus of
"y = x?" was (0, 1/4). Here the roles are reversed; the focus is (1/4, 0). In Example 1
the directrix of "y = x" was "y = -1/4." Here the roles are reversed. The directrix of
"x=yp2"is "x =-1/4."
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If you want to use 9.1.4 or 9.1.5 to do Example 6, "x = y2," from scratch, you
may. We are given x =y, which, by 9.1.4, is also x = (y - k)*/(4a) + h. Comparing the
two expressions, we see k=0, a=1/4, and h = 0.

Reflections. Parabolas have an important reflective property. Narrow-beam lights
(such as some flash lights and search light beams) have a mirrored reflective surface
behind the light source (bulb filament) so that light reflects straight forward (Figure
12). The shape that does this is a parabola. If the inner surface of a parabola is
mirrored, light from the focus is reflected parallel to the axis of symmetry, regardless
of where it hits the mirror.

Solar energy collectors, satellite dishes, and parabolic microphones also use this
property, but in reverse. Parallel light rays, electromagnetic waves, or sound waves
coming in toward the parabolic dish are reflected toward a single point, the focus

(Figure 12).

%) // 7S

Figure 12: Reflections from a parabola.

This property can be discussed algebraically using a principle expressed by
Fermat in 1650:

(9.1.6) "Light traveling from one point to another will follow a path such that,
compared to other nearby paths, the time required will be a minimum or a
maximum, or will remain unchanged."

Most examples require the time to be a minimum (Problem B14). In physics, this
principle can be used to explain why light bends ("refracts") as it passes through the
boundary between air and water, because light travels more slowly through water
(Problem B13). Here we will use it to illustrate that light from the focus of a parabola
reflects from the inner side of the parabola parallel to the axis of symmetry.
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Example 7: This example would work with any
parabola, but, for convenience, consider the
famous parabola y = x> from Example 1. Imagine (1,3) f.‘
the inner surface to be reflective and the focus to '
be a light source (like the filament of a light).
From Example 1, the focus is = (0, 1/4). Let 4
be a point above the parabola (Figure 13).
Suppose a light ray from the focus reflects off the BpA
parabola and passes through point 4. Where does F "_{/f:
that ray reflect off of the parabola? R >

By the Fermat Principle, we need to find the __ )
point P on the parabola such that the total travel Figure 13: Light from the
time from F to P to A is minimum. This is the focus reflects off the
same as finding the point P on the parabola such parabola a:[ P and goes i
that the total distance from F to P to 4 is thmug;oli)ztm}:f‘ Where is
zglinunum, since light travels at a constant speed [-2.5,2.5] by [0, 5].

gure 13).

For this we must build a formula for the total
distance, depending upon P. Then we can minimize the distance, perhaps graphically,

To simplify matters let's use a particular point 4, say (1, 3). We need the
distances from F to P and from P to 4. Suppose we denote P by (x, y). Using the
distance formula 3.1.11,

d(F,P) = (x-0)* + (y-1/4)% . 1
d(P,4)= J(x- 12+ (y-3)*.

These are valid for any point (x, y), but the
problem has a constraint (recall Section 3.6 on
constraints). For a given x, we cannot use just
any y; y must be on the parabola. For any x, y
must be x2. Substituting x? for y and adding,

total distance =J(x- 0)2 + (x* - 1/4)* - 0 1
D2+ (2 -3)2 . Figure 14: The distance
¥ J(x )+ (x ) traveled from Fto Pto 4, in

Graph this distance (Figure 14). terms of the x-value of P.
When the total distance is a minimum, x=1, [-2, 2] by [0, 5].

which is the "1" from the point 4 = (1, 3). That ’ ’

is, this reflected light ray is reflected parallel to

the axis of symmetry.
In general (and we can prove this using calculus), regardless of the location of
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A, the point P on the curve that minimizes the total reflected distance from the focus
always has the same x-value as 4 itself.

Conclusion. Conic sections are important. In addition to being cross sections of a
cone cut by a plane, they can be described geometrically in terms of distance. Also,
they have relatively simple algebraic equations with parameters that exhibit the
center and scale if the axis system is laid out parallel to the axis of symmetry.

Terms: conic section, parabola, focus, directrix.

Exercises for Section 9.1, "Conic Sections: Parabolas":

~An Rewrite the equation in "standard geometric form." Identify the vertex, axis of symmetry, focus,
and directrix of each parabola. Then roughly sketch it.

Al y=2x2 [F: (0, 1/4)] A2 y=22 [diry=-1/4]

A3 y=(x-12+2. [F:(l,9/4)] A4 y=(+32+ 1. [V:(3,1)]

A5 y=x*+4x. [diry=-17/4] A6. y=x*-6x. [axis:x=3]

AT y=2-2.  [V:(0,2)] A8. y=-(x3)%. [F: (0,-9/4)]

A9. y=2x*-8x-5. [axis:x=2] Al0. y=42+12x+1. [V:(-3/2,-8)]
All x=32  [dir: x=-1/4] Al12. x=)¥8. [F:(0,2)]

Al3. x=(y-20+3. [V:(3,2)] Ald. x=(y-T72+4. [F: (17/4,7)]

Al5. P +2x-y=5. [diry=-25/4]  Al6. 2x+)y*=6y. [V:(9/2,3)]

~ A Find the equation of the parabola with the given properties.

Al7. Vertex (0, 0), focus (0, 1). A18. Vertex (0, 0), focus (0, -2).
A19. Vertex (0, 0), focus (1, 0). A20. Vertex (0, 0), focus (-3, 0).
A21. Vertex (3, 4), focus (3, 10). A22. Vertex (0, 2), focus (0, -4).
A23. Vertex (0, 0), directrix y = -2. A24. Vertex (0, 0), directrix x = -1.
A25. Focus (1, 2), directrix y = 0. A26. Focus (1, 2), directrix x=0.
A27. Focus (2, 0), directrix y = -10. A28. Focus (0, 1), directrix x = -2.

A29. Vertex (0, 0), axis y = 0, through (4, 1).
A30. Vertex (0, 0), axis x = 0, through (2, 10).

ANAAAAAAA

Bl.* a) Define parabola. b) Illustrate the definition with a sketch.

B2.* Sketch y = (x - h)*/(4a) + k, labeling the vertex, axis of symmetry, focus, and directrix.
B3. A solar reflector is parabolic, 10 feet wide and 2 feet deep. Where is its focus?

B4. A parabolic microphone is 2 feet wide and 4 inches deep. Where is its focus?

B5. A parabolic searchlight is 1 foot wide and 6 inches deep. Where is its focus?

B6. A parabolic solar reflector is 6 inches deep and has the focus 2 feet in front of the vertex. How
wide is it?
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B7. A parabolic solar reflector is 3 inches deep and has the focus 18 inches in front of the vertex.
How wide is it?

B8. Suppose sound travels about 1100 feet per second. Location 4 is 500 feet from location B.
Suppose a burst of sound is recorded at location 4 1/10 second before it is recorded at location B.
Draw a sketch, locate an axis system on the sketch, and find the algebraic equation satisfied by the
possible locations of the origin of the burst of sound. (Do not bother to simplify it.)

B9. Suppose sound travels about 1100 feet per second. Location 4 is 2200 feet from location B.
Suppose a burst of sound is generated at location A4, reflects off of point P, and is recorded at location
B 3 seconds later. Draw a sketch, locate an axis system on the sketch, and find the algebraic equation
satisfied by the possible locations of point P. (Do not bother to simplify it.)

B10. Lety=x*4 and P be a point on that curve. Let F be the point (0, 1), and B be the point (2, 5).
a) Find the expression for the sum of the distances from B to P and from P to F.
b) Use a graph to find the x-value of the point on the curve that minimizes that expression.

B11. Lety=x%100 and P be a point on that curve. Let F be the point (0, 25), and B be the point
(5, 20). a) Find up the expression for the sum of the distances from B to P and from P to F.
b) Use a graph to find the x-value of the point on the curve that minimizes that expression.

B12. Draw a picture to illustrate why the distance from (x, y) to the line y = -a is |y + a].

B13. A person with eye level 6 feet above the water sees
an object that is actually 3 feet below the water and 10 » 10
feet away horizontally (see the figure). Light from the Eye level
object reaching the person's eye will not travel in a
straight line, because light travels more slowly in water.
It takes 1.33 times as long for light to travel 1 foot under
water as in air. a) Find the path such that light from the
object to the person's eye travels the minimum time
(according to Fermat's Principle, 9.1.6). Describe the
path in terms of the horizontal distance from the eye to
where the light leaves the water. b) The object appears
to be not as deep as it really is. Why?

#B14. Think of an example where a reflection follows
the Fermat Principle and yields maximum time (instead
of minimum time).

#B15. Think of an example where a reflection follows the Fermat Principle and yields constant time
(instead of minimum time).

B16. Use the idea of a "conic section" to explain why the shadow of the tip of a pointed post traces
out one branch of a hyperbola on the ground as the day passes. [Hint: Where is the cone? What
makes the section?]
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Section 9.2. Ellipses and Hyperbolas

Ellipses and hyperbolas are conic sections that can be described with geometric
definitions using distances from two fixed points. If the sum of the distances from
any point on the curve to the two fixed points is a constant, the curve is an ellipse. If
the difference is a constant, the curve is a hyperbola.

Definition 9.2.1. An ellipse is the set of all points in the plane such that the sum of
the distances from two fixed points is a constant. Each of the fixed points is called
a focus (pronounced "FOH kus"; the plural is "foci," pronounced "FOH sigh").

Figure 1 illustrates two fixed points, F, and F,, and a curve of points P such that
the sum of the lengths of the line segments from F| to Pto F, is a constant. Using this
definition, an ellipse can be drawn using a loop of string around two pins (serving as
the foci). Use the point of a pencil to pull the string taut in any direction, forming a
triangle with the point as the third vertex (Figure 2). That point will be on the ellipse,
which will be drawn as the point moves through all positions at the extreme end of
the triangular loop. I have drawn many ellipses this way and it works well.

P

Figure 1: An ellipse. P varies, Figure 2: A way to draw an ellipse.
but the total distance from
F, to P to F, is constant.

A circle is a special case of an ellipse when the two foci are the same point (the
center). Then the distance from the center to any point on the circle and back to the
center is a constant (twice the radius).
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Applications. There are many applications of definitions based on distance. Some
arise in the use of location-finding technology such as sonar, radar, and the Global
Positioning System.

Example 1: Imagine we create a burst of

sound at location F; and record when the

sound arrives at location F, after it reflects off

of a surface at an unknown location P. The

sound travels from F; to P to F, (Figure 3). By

keeping track of when the burst is generated at

F, and when it is received at F, we can tell

how long the sound travels. The total distance

from F, to P to F, is determined by the time

the sound travels (using "distance equals rate

times time," because we know the speed of Figure 3: When the total
sound). Knowing only the total distance and distance from F, to P to F, is
the locations of F, and F,, the position of P is known, point P is on an ellipse
not determined precisely, but it must be with foci at F, and F,.
somewhere on a particular ellipse, according

to the definition of ellipse in 9.2.1 (Figure 3).

Example 1, continued: So far, the only listening point is F,. Now suppose we also
listen at F, for the echo from P. The distance from F, to P and back to F, is
determined by the travel time of the sound. So the distance from F, to P will be
known. Then P must be on a circle with known radius centered at point F, (the circle
in Figure 4). So, if we listen at both F, and F,, then, P is on both the circle and the
ellipse. Therefore the location of P almost determined; it is one of two points where
the circle and ellipse intersect (Figure 4).

P

Figure 4: Point P is on an ellipse with foci at F, and F, and the total distance
Fito Pto F, is known. P is also on a circle with known radius centered at F,.
Therefore the location of P almost determined; it is one of two points.
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When the burst is produced by the listener as in Example 1, the location-finding
method is said to be "active." When the object at P itself generates the burst, there
1s a similar "passive" method of determining location. The object can be located on
a hyperbola.

Definition 9.2.2. A hyperbola (high PER boh A
lah) is the set of all points in the plane such that

the (absolute value of the) difference of the
distances from two fixed points is a constant ‘\
(Figure 5). Each of the fixed points is called a

focus of the hyperbola. Fy Fa

A hyperbola has two branches. Each consists
of points closer to the focus inside that branch.
We continue our discussion of finding

locations.
Figure 5: One branch of

a hyperbola. P varies, but the
difference between PF,
and PF, is constant.

Example 2: Again, suppose two listening
locations, F, and F,, are fixed. Imagine a burst of
sound originating at unknown location P at an
unknown time (Figure 5). Can we use the arrival
times of the sound at F, and F, to locate the point

of origin?
If the sound arrives at both locations at the ¢
same instant, then the source P is equidistant
from each. This is a special case resulting in a F Fa
line of possible locations (Figure 6). So a line is P
a "degenerate" special case of a hyperbola.

Usually we use the term "hyperbola" to apply to
the other cases where the difference in distances
is not zero.

Suppose the sound arrives at F, before it
arrives at F, so the source is closer to F, (Figure
5). The difference in arrival times can be used to compute the difference between the
distances from P to F, and from P to F,. According to the definition of a hyperbola,
that constant difference locates P somewhere on a particular hyperbola with F, and
F, as foci, and on the branch closer to F,.

This result is like knowing that an unknown point is on a particular ellipse—it is
not nearly enough to locate the point. In the previous example, when the sound was
generated at the listening point, we needed a second listening point to almost
determine the location of the reflecting object. Now, when the sound is generated at
an unknown point source, we need a third listening point to almost determine the
location of the source. Each pair (three points make three pairs of points) will locate

Figure 6: A line of points
equidistant from
F, and F,,.
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the point on one branch of a hyperbola. The three
hyperbolas are likely to intersect in only one
point. Figure 7 illustrates branches of two
hyperbolas on which the point P must lie.

This location-finding method has
applications to locating submarines (using
Sonar) and airplanes using radar waves (instead
of sound waves). A method which is similar in
spirit to this example is used by the Global
Positioning System (GPS) to precisely determine
locations on earth. In that case several satellites
transmit signals simultaneously and they are
received at the GPS device at different times
because the GPS device is at different distances
from the different satellites. Because radio waves
travel so extremely rapidly (186,000 miles per

e

Figure 7: A point at the
intersection of branches of
two hyperbolas with focus F

in common. The other 2
foci are marked.

second), it takes an extremely precise clock to detect the differences in arrival times.
These time differences are then converted to differences in distances from the
satellites, which then yield equations similar in spirit to those in 9.2.4 below, which

are then solved to yield the location of the device.

Algebraic Descriptions of Ellipses and Hyperbolas. The geometric definitions of

ellipse and hyperbola mention distances from two foci. Therefore, to describe them
algebraically, we need to express both distances. For an ellipse, their sum is set equal
to a constant. For a hyperbola, their difference is set equal to a constant.

It is convenient to center the ellipse or hyperbola at (0, 0) and have the x-axis
down the middle by locating the foci at (-c, 0) and (c, 0), for some ¢ > 0.

Suppose we call a point in the plane (x, y). How far is it from the focus (c, 0)

(Figure 8)? The formula is

How far is it from (-c, 0)? The formula is

Vi + e + y2.

It is traditional to let the constant that is the sum or
difference of these two distances be denoted by 2a.
For an ellipse, 2a, the sum of the distances, must be
greater than 2¢, which is the straight-line distance
between the two foci. So, for an ellipse, a > c. For
a branch of a hyperbola, the difference must be less
than the distances between the two foci, so 2a must

(xy)

e

(c,0) (c, 0)

Figure 8: (x, y) and the two
foci, (c, 0) and (-c, 0).
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be less than 2¢ and a < c. The number 2a may be zero as a special case (a line, Figure
6). The equations are

(9.2.3, ellipse) \/(x - c)2 + y2 + ¢(x + c)z + y2 =%a.

(9.2.4, hyperbola) o -2 + 32 - x + ¢ + y? =+2a.

This hyperbola equation with the minus sign determines the branch closer to (c, 0)
than to (-c, 0). With the plus sign it determines the branch closer to (-c, 0).

Neither of these equations is pleasing. Fortunately, they can be simplified by
squaring twice (by the procedure outlined in Example 4.3.8).

Details. We simplify the case of the ellipse here.

Joo = + 32 + Jix + ¢ + y2 =2a

Vo + o +y? = 2a - J(x - o) + )7

Squaring both sides
x+e)+y'=4a’ -4aix - +y* + (x - ) +y?

P4+2ex++y*= 4a% - 4a x* - 2ex + ¢? + y? + x2 - 2cx + % + 2.

Several terms cancel.

4ex - 4> = -4a \x? - 2cx + c? + y2

2 2

cx-a®= -ax% - 2cx + ¢

(cx - =a*(x* - 2cx+ 2 +)7)

AP - 2a%cx + at = a*P - 2d’cx + @’ + a%y?
Now, two terms cancel. Putting all the x's on the right,

al(@® - A =(a*- AHx* + aH’.
Now, because a > ¢ > 0, a* - ¢* > 0. Thus we can let b* = a? - %
@’ = b + aH.
Dividing through by a?b?, we obtain
2

ty

2
+.'_y__.=l_
b2

This is the "standard form" of an ellipse (3.3.4) that we first encountered in Section
3.3 on distance, circles, and ellipses. There we recognized this equation as the
equation of a circle with the scale changed. The graph of the unit circle is expanded
by a factor of a in the x-direction and by a factor of b in the y-direction.

QN'H
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Ellipses Centered at the Origin. The "standard form" of ellipses centered at the origin

18

x2
a2

(9.2.5)

+

2
Y =1,
b2

The graph goes through (a, 0), (-, 0), (0, b), and (0, -b). These four points make

it easy to graph (Figures 9 and 10). The

foci are ¢ units from the origin, where a* =

b* + & if the major axis is horizontal and &’ = @ + &* if the major axis is vertical.

(0, -b)

Figure 9: An ellipse, with a > b.
Pla® + y b =1.
Foci at (-¢, 0) and (c, 0).

Ellipses are longest along the
"major axis" through the foci.
When a > b as in Figure 9, the
major axis is the horizontal line
segment of length 24 from (-q, 0) to
(a, 0). When b > a as in Figure 10,
the ellipse is taller than it is wide
and the major axis is the vertical
line segment of length 25 from
(0, -b) to (0, b). Therefore, the
greater of a and b is the length of
the "semi-major" axis ("semi"
means "half"). The distance from
the foci to the center is denoted "c".

Through the center and
perpendicular to the major axis is
the "minor" axis. The smaller of a
and b is the length of the "semi-
minor axis" (half of the minor axis).

Figure 10: An ellipse with b > a.
Pl + b = 1.
Foci at (0, ¢) and (0, -¢).

Some texts always use "a" for the length of the
semi-major (longer) axis, regardless of whether
"a" is associated with "x" or "y". This text
always associates "a" with the x-direction and

"b" with the y-direction.

If a > b (Figure 9), ¢’ = a* - b~

The length is horizontal.
The foci are on the horizontal axis of

symmetry at (-c, 0) and (c, 0).

If b > a (Figure 10), & = b* - .

The length is vertical.

The foci are on the vertical axis of symmetry
at (0, -c) and (0, ¢).

In both cases, ¢* = larger” - smaller’.
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Given the equation in standard form, ellipses are easy to sketch (Figures 9 and
10).

Example 3: Sketch the ellipse and locate its foci given the equation

x*25+y%9=1.
Because the form 9.2.5 fits, it is centered at the
origin. a =5 and b = 3, so it goes through (-5, 0) 1
and (5, 0) on the major axis, which is the x-axis. ©.3)
The ellipse goes through (0, 3) and (0, -3) on the
minor axis, which is the y-axis (Figure 11). The
foci are on the major axis at (-c, 0) and (c, 0),
where a® - b2 = c?, so ¢ = 4. The foci are at (-4, 0) .
and (4, 0).

When a > b, as in this example, a is both the
distance from the center to the horizontal ends and (0, -3)
the distance from (0, b) to the foci. Given the T
graph, but not the foci, the foci can be easily _
determined by striking an arc of length a from the ¥igure 11: X125+ /9 =1.
top of the ellipse and noting the two points where [-3, 51by [-5, 51.
it crosses the horizontal axis (Figure 9).

Calculator Exercise 1: Learn how to graph ellipses on your calculator by solving
for yin 9.2.5.

x2
(9.2.6) y=tbyl-=

You may need to graph two graphs, one for the upper half and one for the lower half,
Use this approach to graph x%/25 + y%/9 = 1 on your calculator. Does your graph
resemble Figure 11?

Example 4: Identify and sketch the ellipse with equation 3x2 + 5y2 = 40.
Thekeys to "standard form" are that the right side is 1 and that the squared terms
are alone on top with coefficient 1. Any multiple must be rewritten to be on the
bottom.
3% + 57 =40
3x%/40 + 5)7/40 = 1

2 2

Y _
(40)+ 2 =1.

3
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2 2
X
P21,

origin. From 9.2.5,a= /40/3 =3.65and b =8
= 2.82. If we do not worry too much about the

[ /5‘9)2 (VB) I
3 1
This fits the form of an ellipse centered at the ———t ‘/ :
precise shape, the graph is easy to sketch using just +
the four points on the graph that the values of a

and b provide (Figure 12). Figure 12: 3x*+ 5y2 = 40.

a=3.65and b=2.82.
Example 5: Identify the foci of the ellipse with [-5, 5] by [-5, 5].
equation

2 2
L A

25 169 ©IL _F
10T

ry

Here the major (longer) axis is the y-axis and
therefore the foci lie on the y-axis at (0, ¢) and -5.0) 5.0)
(0, -c), where, again, ¢* is determined as the larger " :

denominator minus the smaller denominator. ¢ -10 10
=169 - 25 = 144, so ¢ = 12. The foci are (0, 12) 10

and (0, -12) (Figure 13). Be sure not to draw the 4 3
ellipse pointed at the end. Even long and thin (0.-13)

ellipses are really quite rounded at the ends.

Figure 13: An ellipse with

ertical maj is.
Location Shifts. To center an ellipse at (A, k), let ;,2 /9 Sci ;?/?ggr ixis

"x - h" and "y - k" play the roles of "x" and "y" in 20, 201 by [.20. 20
9.2.5 where the graph was centered at the origin. [-20, 20] by [-20, 20).

The Standard Form of an Ellipse:

9.2.7) C-h L 0-B
a? b?

This ellipse is centered at (4, k) and goes through the points (4 - a, k), (h + a, k),
(h, k+ b) and (h, k - b) (Figure 14).

If @ > b, the major axis lies along y = k (in the x-direction), and the foci are ¢
units from the center on the major axis at (4 - c, k) and (& + c, k), where ¢ = a* - b*.

If b > a, the major axis lies along x = & (in the y-direction), and the foci are ¢
units from the center on the major axis at (, k - ¢) and (h, k + ¢), where ¢ = b* - a*.
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(h, k+ b)

(h_ a, k) f':1 (hr k)

(h, k- b)
Figure 14: An ellipse with Figure 15: The ellipse with
center (h, k), semi-major axis center (1,-2), b=3 and a = 2.
a, and semi-minor axis b. [-5, 5] by [-5, 5].

Example 6: Identify the ellipse with equation 9x* - 18x + 432 + 16y =11.

Aim for the standard form 0f9.2.7. If the coefficients on x* and ¥* were the same,
it would be a circle and we would complete the square to find the center. Since the
coefficients are different, but the same sign, it is an ellipse. Complete the square to
find the center.

9x% - 18x + 4y” + 16y = 11

9(x* - 2x) + 4 + 4y) =11

9 -2x+1-1)+40P+4y+4-4)=11
9(x-11-9+4(+2)-16=11

9(x- 1Y +4(y+2) =36

(x - 1) L0 +2y -1
22 32

The center is (1, -2) (Figure 15). Because 3 > 2 and 3 is associated with ¥, the major
axis is vertical. ¢#=3%-2%=35, so ¢ = V5. The foci are v'5 from the center.

The Equation of a Hyperbola. The "standard form" of a hyperbola centered at the
origin with foci at (-c, 0) and (c, 0) follows by simplifying Equation 9.2.4. We omit
the details, which are very similar to the details included for the ellipse (problem
B17).

Hyperbolas Centered at the Origin with Foci on the x-axis. The "standard form" of

a hyperbola centered at the origin and foci at (c, 0) and (-c, 0) is

2 2
(9.2.8) X Y o
a2 b2

where a” + b? = ¢. The lines y = +(b/a)x are asymptotes (Figures 16 and 17).
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This equation is very similar to the equation for an ellipse—except the plus sign
has become a minus sign.

(0, b) /.
N A A
| e
(—a' O) é “\ ," a é(av 0)

T
Figure 16: Sketching a hyperbola. Figure 17: Sketching a hyperbola.
Step 1: Find (a, 0) and (-a, 0). Step 4: Sketch the curve through
Step 2: Find (0, b) and (0, -b) (a, 0) sweeping up and down toward
and sketch in the rectangle, as shown. the asymptotes.
Step 3: Lightly draw the asymptotes Step 5: Fill in the other half,
through the corners of the box and symmetrically.

the origin.

The graph goes through two easy points: (-a, 0) and (a, 0). These points on the
curve are between the foci (the reverse of the situation for an ellipse, where the foci
are between the points on the curve). There is no y-value for x = 0 because
substituting in x = 0 yields the equation -y*/b* = 1, which cannot be satisfied (because
a negative number is never 1). Therefore, the two branches of the hyperbola do not
meet; there is a gap between them near x = 0.

Solving for y and simplifying

9.2.9) y=2 2 T2
a

This is the functional form suitable for graphing with a graphics calculator.

As x becomes large, yx? - a® approaches x, so, for large x, y is

approximately +(b/a)x. The lines through the origin with equations y = +(b/a)x are
asymptotes with slopes +b/a. The curve sweeps up and down from the axis toward
the asymptotes. To sketch the graph of Equation 9.2.8 it is essential to locate (a, 0)
and the two asymptotes. An easy way to plot the asymptotes is to make the rectangle
in Figure 16 and draw the diagonal line through the corners and the origin.

To locate the focus at (c, 0), swing an arc centered at the origin through the
upper right corner of the box and mark where the arc cuts the x-axis (Figure 17). This
works because c is both the distance from the center to the foci and the distance from



Ellipses and Hyperbolas. Section 9.2. 517

the center to the corner of the box (because ¢ = a* + b?).

Calculator Exercise 2: Formula 9.2.9 gives the functional form which permits
graphing a hyperbola with a graphics calculator. Identify a and b in the next example
and use 9.2.9 to graph the equation on your calculator.

Example 7: Sketch the graph of the equation x*/25 - y?/4 = 1.
Here a =5 and b = 2. The graph goes through (-5, 0) and (5, 0). The asymptotes
have slope 2/5 and -2/5 (Figure 18).

Figure 18: x*/25 - y/4=1. Figure 19: x*-*/16=1.
[-5, 51 by [-5, 5]. [-5, 5] by [-5, 5].

Example 8: Sketch the graph of the equation x* - y*/16 = 1.

Here a =1 and b = 4. The graph still opens around the x-axis because the "x*"
term is positive, as in Equation 9.2.8. The graph goes through (-1, 0) and (1, 0), and
the asymptotes have slope 4 and -4 (Figure 19). 2

Equation 9.2.8 is not symmetric in x and y.
One of the squared terms has a plus sign and the
other a minus sign. The foci are on the axis
corresponding to the plus sign. The hyperbola

"opens" around the central axis, which is the a0
horizontal axis in Figures 16 and 17. If the foci are , N\
vertically aligned, the roles of "x" and "y" are
switched and the parabola opens around the vertical

axis.

Example 9: Graphy*-x*=1. Figure 20:y2-x2'==1 :
The graph opens around the y-axis (Figure 20). ©pens around a vertical axis,
corresponding to the
positive 3 term.
['53 5] by [_Sa 5]
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Scale Changes. In Section 2.2 (Composition and Decomposition) we discussed
scale changes in general, and in Section 3.3 (Distance, Circles, and Ellipses) we
discussed circles and how, with scale changes, circles become ellipses. The "standard
forms" can be interpreted as scale changes of just two basic graphs, the unit circle "x?
+)?=1" (Figure 21) and the hyperbola "x? - y* = 1" (Figure 22).

A

Figure 21: x*+j)*=1. Figure 22: x*-j)*=1.
[-5, 51 by [-5, 5]. [-5, 5] by [-5, 5].

If, in an equation, "x" is replaced by "x/a," the new graph becomes a times as
wide. This is because x must be a times as great for "x/a" to assume the same value
and yield the same image as the old "x". Similarly, replacing "y" by "y/b" yields a
graph b times as tall. Can you see this by comparing Figures 9 through 13 to Figure
217 Can you see this by comparing Figures 18 and 19 to Figure 22?

Location Changes. To shift the graph so the center is (4, k), simply substitute "x - 4"
for "x" and "y - k" for "k" in the form 9.2.8.

Hyperbola with a Horizontal Axis: The "standard form" of a hyperbola with a

horizontal axis is
— B2 2
(9.2.10) (x 2”) _ b bzk) -1,
a
The center is (h, k), the axis is y = k, the foci are (& - ¢, k) and (k + ¢, k), where ¢* =

@ + b*. The graph goes through (% + a, k) and (4 - a, k). The asymptotes are lines
through the center with slopes +b/a.

Example 10: Identify and sketch the hyperbola with equation
"+ dx - 92 =32."
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Aim for standard form. First complete the 1
square.
x* +4x - 97 =32 is equivalent to
P +4x+4-97 =36,
(x+2)*-9y” =36,

Cr 2y
62 2

The center is (-2, 0). a = 6 and b = 2. The axis is
horizontal, since the "x*" term has the positive sign.
Figure 23 illustrates the graph, including the
asymptotes. Figure 23: The graph of

X+ 4dx - 9P =32,
Example 11: Identify and sketch the hyperbola [-10, 10] by [-10, 10].
with equation

"5x% - 2)7 - 16y =12."

The orientation of this hyperbola is not easy to guess. Aim for standard form.
Complete the square.

5 -2 - 16y =12

55 - 27 - 8y) = 12.

55 -2 -8y +16-16)=12.

5x%-2(7 - 4 =12 - 32 =-20.
Note the negative sign on "-20." To convert to "standard form" the right side must be
(positive) 1. The signs must be changed.

2(y - 4)* - 5x2 = 20.

0)_4)2__{_3_1
10 4

- 2

w1y 2

The center is (0, 4) and it opens around a vertical
axis (Figure 24).

The equation we just obtained in Example 11
is very similar to the standard form for a horizontal
hyperbola-but the signs are changed on the squared
terms. That switches the roles of the axes and ¥
makes the hyperbola vertical. Figure 24:

557 -2y* - 16y = 12.
[-10, 10] by [-10, 10].
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Hyperbola with a Vertical Axis: The "standard form" of a hyperbola with a vertical
axisis
-2 Ay
9.2.11) O-b _ &k
b2 a?
The center is (h, k), the axis is x = h, the foci are (h, k + c) and (h, k - c), where & =

@’ + b’. The graph goes through (k, k + ¢) and (k, k - ¢). The asymptotes are lines
through the center with slopes +b/a.

Hyperbolas and ellipses have important reflective properties which are discussed
next.

Reflective Properties. All ellipses have a remarkable reflective property. Every ray
generated at one focus will reflect through the other focus, regardless of its original
direction (Figure 25).

.

25

y
Patient's
kidney stone
Figure 25: Rays generated at Figure 26: An ellipsoidal lithotripter.
one focus of an ellipse reflect Shock waves reflect through the second

through the other focus. focus at the same time.

Example 12: A lithotripter is a medical machine for destroying painful kidney
stones without surgery. It has areflecting ellipsoidal surface (Figure 26). An ellipsoid
is a 3 dimensional surface formed by rotating an ellipse about its major axis. The
reflecting surface is not a complete ellipsoid. It encloses only one focus and leaves
room for the other focus to be precisely positioned at the kidney stone inside the
patient. Then a strong shock wave is generated at the enclosed focus. Waves
reflecting off the ellipsoid in all directions pass through the other focus (the kidney
stone) at the same time. The focused shock wave can pulverize the stone and then its
fragments can pass through the system without surgery.
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Hyperbolas also have a remarkable and useful reflective property. Consider one
branch with the convex side reflective. All light rays aimed at the focus behind the
branch will be reflected through the other focus, regardless of the original angle of
the rays (Figure 27).

Parabolic /

Hyperbolic
mirror
Figure 27: Rays aimed at a focus of a Figure 28: Parabolic and
hyperbola reflect through the other focus. hyperbolic mirrors combined.

Example 13: A reflecting telescope with a parabolic mirror at one end will focus
parallel rays at a point in front of the mirror (Figure 9.1.15). But you can't put your
eye there; your head would block the incoming rays. Instead, put a convex hyperbolic
mirror just in front of the focus so that the focus of the parabola is also the focus of
the hyperbola (Figure 24). Then the rays reflected from the parabolic mirror will be
aimed at a focus of the hyperbolic mirror. By the reflective property of hyperbolas,
they will reflect through the other focus. Arrange it so that the second focus of the
hyperbola is behind the parabolic mirror. Then, only a small hole in the big parabolic
mirror is needed to focus the light behind the big mirror, where an eye or camera can
be located.

Distinguishing the Types of Conic Sections. The algebraic equations for parabolas,

circles, ellipses, and hyperbolas are somewhat similar. How can we tell which is
which?

In the equation of a parabola, only one of "x" or "y" is squared (see 9.1.5 and
9.1.6). If both "x" and "y" are squared, expect a circle, ellipse, or hyperbola. (There
are some special cases where the graph is a line, a point, or nothing at all.) How are
circles, ellipses, and hyperbolas distinguished?

Consider an equation of the form

(9.2.12) a*+bx+c +dy+k=0.

Assuming a # 0 and ¢ # 0 (that is, both squared terms exist)
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1) If a and c are the same sign, expect an ellipse (problem B16).
2) If a and c are equal, expect a circle, which is a special ellipse.
3) Ifaand c are opposite signs, expect a hyperbola.

One of the squared terms may be missing.
4) If a= 0 or ¢ = 0, but not both, expect a parabola.

To determine the equation in "standard form," the procedure is to first complete
the square on x and also on y to locate the center. Then aim for one of the standard
forms.

Example 14: 3x* + 12x +3)” = 50 is a circle. The coefficients on x* and ) are equal.

5x’ + 20x + y* = 50 is an ellipse because the coefficients on x> and j? are not
equal, but they have the same sign.

5(x+2)* - y* = 50 is a hyperbola. The coefficients on x* and y* have opposite
signs. Because the coefficient on x” is the same sign as the constant, the hyperbola
opens around the x-axis.

x +2+y*=501is a parabola. There is no x* term.

Conclusion. Equations with terms in both x* and y* can determine circles, ellipses,
or hyperbolas. These shapes have important properties. They are easily graphed after
they are written in "standard form." Completing the square is an important step in
attaining standard form.

Terms: ellipse, hyperbola, focus, semi-major axis, semi-minor axis, standard form.

Exercises for Section 9.2, "Ellipses and Hyperbolas":

MADetermine the type of conic section. Rewrite the equation in "standard form," determine a, b,
and c, identify the center, and roughly sketch it.

Al 2+)M4=1. [c=V3] A2 #9+3*=1. [a=3]

A3. X/4-32=1. [a=2] A4 ¥ -39=1 [b=3]

A5. Y -¥4=1. [c=V5] A6. 16 -32=1. [a=1]

A7 42+ 97=36. [b=2] A8. 42 +3=25. [c=43]

A9. 42-92=36. [c=23.6] A10. 42-32=25. [c=56])

All ¥®-42=1. [c=11] Al2, 9% -32=1. [c=.94]

Al3. 1008 +25)° =4, [c=.35] Al4. 42 -92=1. [b=1/3]

Al5. (x-32+4(y+2P=4. [c=17] Al6. 9(x+2)-1*=9. [c=32]
Al7. 42 -8x+ 92 +36y+4=0. [c=2.2] Al8. 42 +8x+37 -6y +9=0. [c=22]

AMAFind the equation of the ellipse with the following properties.

A19. Foci (-2, 0) and (2, 0), semi-major axis 3,

A20. Foci (0, 1) and (0, -1), semi-major axis 2.

A21. Center (1, 3), semi-major axis vertical and length 4, semi-minor axis 2.
A22. Center (3, 4), semi-major axis horizontal and length 5, semi-minor axis 1.
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M MFind the equation of the hyperbola with the following properties.
A23. Foci at (-2, 0) and (2, 0), through (1, 0).

A24. Foci at (0, 1) and (0, -1), through (0, %%).

A25. Center at (1, 5), through (1, 9), with focus at (1, 10).

A26. Center at (-2, 3), through (0, 3), with focus at (1, 3).

MAIdentify the type of conic section. Do as little work as possible.

A27. -5 =1. A28. X2+ 5y=2,
A29. X*+y*+ 10y = 50. A30. x2+ 6x + 3y? = 100.
A31. x+5y=27. A32. Y+ 6y=x+10x.

A33. 322+ 9x+3)2-8y=200.  A34. 3x*+9x+4y* - 8y = 200.
A35. 3x*+ 9x - 47 - 8y = 200. A36. 3x*+ 9x - 8y = 200.

ANANNAAAAN

B1.* a) Sketch an ellipse centered at the origin and label @, b, and c on it. Include a right triangle that
relates a, b, and c as its sides and label the hypotenuse.

B2.* a) Define ellipse. b) Ulustrate the definition with a sketch.

B3.* a) Sketch a hyperbola centered at the origin and label a, b, and c on it. Include a right triangle
that relates a, b, and c as its sides and label the hypotenuse.

B4.* a) Define hyperbola. b) Illustrate the definition with a sketch,
BS5. Suppose x%/c? - y*/d® = 1. What are the slopes of the asymptotes?
B6. Suppose y*/c? - x*/d* = 1. What are the slopes of the asymptotes?

B7. Let Fbe (3, 0) and L be the y-axis. Let P be a point such that the distance from F to P is 1/2 the
distance from P to L. a) Find, by inspection, two points on the x-axis that satisfy the restriction on
P. b) Find, by inspection, two points on the line x = 3 that satisfy the restriction on P. c) Use
rectangular coordinates to set up an equation for all such points. d) Simplify the equation into
standard form and identify the conic section.

B8. Let Fbe (3, 0) and L be the y-axis. Let P be a point such that the distance from F to P is twice
the distance from Pto L. a) Find, by inspection, two points on the x-axis that satisfies the restriction
on P. b) Find, by inspection, two points on line x = 3 that satisfy the restriction on P. c) Use
rectangular coordinates to set up an equation for all such points. d) Simplify the equation into
standard form and identify the conic section.

MANFor B9-B15] The eccentricity of an ellipse or hyperbola is

the distance between foci
the distance between vertices

where the vertices are the points on the major axis.
B9. For an ellipse, if a > b, e= c/a. Suppose the eccentricity of an ellipse is 1/2 and @ > b. a) What
is the ratio of a to 5?7 b) If a/b = 2, what is the eccentricity?

B10. [See the definition of "eccentricity” above B9.] For a hyperbola that fits form 9.2.10, if the
eccentricity is 3, what is the ratio of a to b? b) If a/b = 3, what is the eccentricity?
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B11. For a hyperbola with horizontal axis, give a formula for the slopes of the asymptotes if the
eccentricity ise > 1.

B12. For ellipses, give a formula for the ratio of length to width if the eccentricity is e.
BI13. If the ratio of length to width of an ellipse is », give a formula for the eccentricity.

B14. If the slopes of the asymptotes of a horizontal hyperbola are +m, give a formula for its
eccentricity.

B15. Which hyperbola has greater eccentricity, the one in Figure 18 or the one in Figure 19?7

B16. In 9.2.12 "special cases” can occur that do not produce the "expected” result.
a) Case 1 may produce a point or nothing, How?
b) Case 3 may produce a pair of lines. How?

B17. Inspect the details required to convert 9.2.3 into standard form (page 511). To convert 9.2.4
to standard form most steps would be very similar. Atwhich step is the really significant difference?
Redo that step to show you understand the difference.

B18. Let F'be the origin and L be the line x = -4. Let P be a point such that the distance from F to
P is e (a parameter, the "eccentricity," greater than 0) times the distance from P to L. Use
rectangular coordinates to set up an equation for all such points. [Do not bother to simplify.
Simplifying is quite hard.]

B19. In Example 1 the time of the burst was recorded at F, and compared to the time its reflection
was received at F, to determine the total distance the sound traveled, and therefore, to determine the
ellipse (Figure 3). There is a way to determine the total distance by recording time only at F,, since
the sound will be heard twice at F,, one directly and once reflected. a) How can we do this, even if
we fail to record when we generated the burst at F,? b) For example, if sound travels at 1100 feet
per second, F is 2200 feet from F,,, and we record the sound twice at F,, the second time 1/2 second
after the first, what do we know that allows us to find the equation for all possible reflecting points?

B20. The graph of y = 1/x is a hyperbola. a) What is its axis of symmetry?

b) Letu=x-yandv=x+y. Rewrite "y = 1/x"interms of » and v. ¢) Graphu=0andv =0, and
¥ = lx together. [Note how, on the axis system created in Part (c), the graph looks like a standard
hyperbola opening up around an axis.]

B21. [See Figure 4] If F, is the both center of a circle and the focus of an (non-circular) ellipse, can
the circle and ellipse intersect in four locations, as some circles and ellipses can? Argue why it can
or can not.

B22. (Short and interesting, but hard) A hyperbola can be determined as a cross-section of a cone
(Figure 9.1.2C). Explain, using this fact, why the tip of the shadow of a pointed object moves in a
branch of a hyperbola as the sun goes across the sky. For example, the tip of the shadow of the point
sticking up from a flat sundial moves in a hyperbolic path.
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Section 9.3. Polar Equations of Conic Sections

Parabolas, ellipses, and hyperbolas can be described using distances from a focus
and a directrix. When the focus is located at the origin, polar coordinates use  for the
distance from the focus. This makes conic sections easy to describe in polar
coordinates.

There are several equivalent ways to define conic sections. Here is one that uses
afocus and a directrix to simultaneously describe parabolas, ellipses, and hyperbolas.

Let L be a line (a directrix) and F be a point (a focus) not on that line. Let e, a
parameter that is called the eccentricity of the conic section, be an arbitrary constant
greater than 0. Consider the set of points P such that the distance from Fto Pis e
times the distance from Pto L.

distance from F to P _ e

(9.3.1)
distance from P to L

If e=1, the curve is a parabola. If e < 1, the curve is an ellipse. If e > 1, the curve
is a hyperbola.

If e =1, we already know that FP = PL defines a parabola (Figure 1, Definition
9.1.3). However, this way to define ellipses and hyperbolas is new. It yields simple
polar-coordinate equations.

/ E d rcos 6
| O S——
L:' i

: P v :
1 ! r
L :
s x==d | / ;
i F 5 (

Figure 1: A parabola. Figure 2: The distances from
e=1. Fto P and from Pto L.

Orient the axis system so that F'is at the origin and the directrix is x = -d (Figure
2). Consider P to the right of the directrix as in Figure 2. Now express this: "The
distance from F to P is e times the distance from P to L."

In polar coordinates, P = (r, 0) and the distance from F to P is simply ». The
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distance from P to L is r cos O + d (because x = r cos 0, Figure 2). Therefore,
r=-e(r cos 0 + d).

Solving for 7 in terms of 0,

r-ercos 0 =ed.
r(1-ecos 0)=ed.

ed

9.3.2 r= ——
( ) 1 -ecos©

This is the polar form of the equation of a conic section with focus (0, 0),
directrix x = -d, and eccentricity e > 0. If e < 1, it is an ellipse. If e = 1, it is a
parabola. If e > 1, it is a hyperbola.

Example 1: Let a focus be at the origin, the directrix be x = -3, and the eccentricity

be 1/2. Find the polar equation of the conic section and sketch it.
The polar-coordinate equation follows directly : 1

from 9.3.2 (Figure 3): ' :

(1/2)3

1 - (1/2)cos 0 x=—3§ » /1/:\
0\

Four points are easy to find because cosine is -3!
so simple at the major angles 0, /2, 7, and 37/2. '
When 0 = 0, cos 6 = 1 and the polar-coordinate
point (3, 0) is determined (it is also represented by
(3, 0) in rectangular coordinates). When 0 = /2, :
cos 8 =0, and the polar-coordinate point (3/2, 7/2) Figure 3:
results, which is on the positive y-axis. When 0 = .= (3/2)/[1 - (1/2)cos 0].

7, cos 8 = -1 and the point (1, 7) results (whichis [_5 5]y [-5,5]. 0< 0 <2T.
(-1, 0) in rectangular coordinates). Finally, 0 = e=1/2.

37/2, yields the point (3/2, 37/2) on the negative y-

axis (which is (0, -3/2) in rectangular coordinates).

Note how these four points fit the fact that the eccentricity is 1/2. In rectangular
coordinates, the point (3, 0) is 3 units from the origin and 6 units from the line x = -3,
for a ratio of 1/2. On the negative x-axis, (-1, 0) is 1 unit from the origin and 2 units
from the directrix, yielding the desired ratio 1/2. Points on the y-axis are all 3 units
from the directrix. Therefore, to make the ratio 1/2, the points on the-axis must be 3/2
units from the origin: (0, 3/2) and (0, -3/2) in rectangular coordinates.
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Example 2: Identify the type of conic section and give its eccentricity and directrix

(Figure 4).
12
3 - 2co0s 0
Manipulate this into the form 0f9.3.2. First get
the "1" in the denominator.

12
3 - 2cos O

r=

4
1 - (2/3)cos 6 °
So e =2/3 <1, so it is an ellipse. Now, since the

numerator is ed, (2/3)d = 4, so d = 6. The directrix
isx = -6.

Example 3: Identify the type of conic section and
give its eccentricity and directrix (Figure 5).

_ 5
rs= — .
2 - 4cos O
Again, get the "1" in the denominator.
_ 5/2
1 -2cos 0

So e =2 >1 and the conic section is a hyperbola.

directrix is x = -5/4.

Discovery 1: Graph the equation in Example 3
(Figure 5) with a graphics calculator in "Polar"
mode. Which quarter of the hyperbola appears
first? Second? Explain why, mathematically
(problem B1). [If your calculator does not have a
"Polar" mode, see problem B31.]

Figure 4:
r=12/(3 - 2 cos 0).
[-7,13] by [-10,10].
0<0<2m e=2/3.

5/2 = ed = 2d, so d = 5/4. The

Figure 5: r = 5/(2 - 4 cos 0).
[-5,5] by [-5,5]. 0 < 6 <2.
e=2.
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Figures 6 and 7 illustrate the effect of eccentricity on the shapes of conic
sections.

Figure 6: Ellipses with e = .8 and .95, respectively.
2 5

. r . .
1 -.8cosO 1 - .95 cos ©
[-10, 10] by [-10, 10]. 0 < 6 < 2.

Discovery 2: Figure 6 displays the shapes associated with 2 different values of e. To
get both ellipses approximately the same size in the same window, the numerators
had to be different. Why? Use a graphics calculator to compare the graphs of

= 2 _ 2
r= ——— and r= .

1 - .8cos 0 1 -.95cos O

Why is the second so much wider than the first (problem B3)?

\ s

16

14
/ o8 -2
-4
-6
-8

Figure 7: Hyperbolas with e = 1.1 and 3, respectively.
1 1

1 -11cos® 1-3cosO
[-15, 5] by [-10, 10]. 0 < 0 <27. [-1, 1] by[-1, 1].
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Other Orientations. The family of conic sections described by 9.3.2 had a vertical
directrix d > 0 units to the Jeft of the origin. Similar equations can be derived if the
directrix is vertical and to the right of the origin, or if it is horizontal and above or
below the origin.

Let the eccentricity be e > 0 and the directrix be d > 0 units from the focus at the
origin. The usual equation for an ellipse is given by 9.3.2. However, if the directrix
is vertical at x = d (instead of x = -d, as 9.3.2) an equation is

ed

93.3 r= - .
( ) 1 +ecos©

If the directrix is horizontal at y = -d, an equation is

ed

9.3.4 - e
( ) 4 1 -esin©

Finally, if the directrix is horizontal at y = d, an equation is

ed

9.3.5 r= ———=
( ) 1 + esin O

These equations are given for positive values
of d, but they also work for negative values of d
(problems B7, B8, and B24).

A vertical directrix leads to symmetry about
the x-axis. In this case r is written as a function of
cosine, which is symmetric about 6 = 0, which is
the x-axis. A horizontal directrix leads to symmetry
about the y-axis. In that case, r is written as a
function of sine, which is symmetric about 0 = /2, Figure 8: r = 5/(4+5sin 0).
which is the y-axis. [-10, 10] by [-10, 10].

0<0<2m. e=5/4=1.2.

Example 4: Find the eccentricity and directrix of
conic section with equation

5
4 + 5sin@

Aim for the "1" in the denominator.

5/4
1 + (5/4)sin@

(5/4)1
1 + (5/4)sin®
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Therefore, from 9.3.5, e = 5/4 > 1, the conic section is a hyperbola, and the directrix
is y = 1 (Figure 8).

The Major Axis. The semi-major axis played an important part in rectangular-
coordinate equations of conics. Here we discover the length, a, of the semi-major
axis in terms of e and d from equation 9.3.2.

Example 5: Find the length of the semi-major axis when the polar equation is

4
1 - (1/3)cos O

This equation fits 9.3.2, so the directrix is i
vertical and the major axis of length 2a is T
horizontal (9.2.7, Figure 9). Therefore 2a is the //_\
distance between the points on the x-axis, that is, -+t
the distance from the point where 0 = 0 to where - \J
0 = n. Add the corresponding values of r: L

2a = r(0) + H(T) ST
_ 4 N 4
1 - (1/3)cos O 1 + (1/3)cos ©
Figure 9:
-4 4 r=4/[1-(1/3)cos 0].
2/3 473 [-10, 10] by [-10, 10].

<0<2m. e=1/3.
—643=9. 0<0<2m. e=1/3

Therefore g = 9/2.

For general ellipses in the format 9.3.2,

2a=r(0)+r(n) = ed + ed
1 ~-ecos 0 1l -ecosm

ed ed

= +
1 -e 1 +e

i

ed(l+e+1—e)

1 - e?

2ed
1 -e

3



Polar Equations of Conic Sections. Section 9.3. 531

This generalizes to ellipses and hyperbolas in the forms 9.3.2-9.3.5 (Problem
B4). If the directrix is |d| units from the origin and the eccentricity is e, then

(9.3.6) a= —cd
1 - e?

where a is the length of the semi-major axis. Also,
(9.3.7) eld|=all - €.

Example 6: Pluto moves about the sun in an ellipse with eccentricity 0.2485 and a
= 39.5 astronomical units. (The distance from the Earth to the Sun defines 1
astronomical unit.) Give a polar equation of the
orbit (Figure 10).

The parameters in polar form are e and d, and
d only appears in the product ed. Use 9.3.7. 37.06

_ 39.5(1 - .2485?%) /
1 - .2485co0s0 t Sun }
37.06
37.06 \J

1 - .2485co0s0

The rectangular-coordinate equations for
ellipses and hyperbolas in Section 9.2 emphasize
the center, in contrast to the polar equations in this
section which emphasize a focus. So the polar
equations in this section are not simply polar versions of the rectangular-coordinate
equations; the location and parameters are different.

Figure 10: The orbit of
Pluto. e=.2485.

Example 5, revisited: Find the equation in standard rectangular-coordinate form if,

4
1 - (1/3)cos®

as in Example 5 and Figure 9, r =

To find rectangular-coordinate form we determine q, b, and the center (4, k) of
form 9.2.7.

In Example 5 we found a = 9/2. Formula 9.3.6 would yield the same result in
one step: 4/(1 - (1/3)?) = 9/2. The plan is to find the center next, which yields ¢, and
then to find & from a and c.

The center is half way between the two endpoints of the major axis (Figure 9).
The left endpoint has x = -3 and the right endpoint has x = 6, so the center has
x = 3/2; itis (3/2, 0) (which is expressed the same way in both coordinate systems).

This tells us that ¢ = 3/2, because "c" denotes the distance from the center to a
focus. Now we can find b usinga and ¢: ¢ = a” - b? (from 9.2.7). Plugging in,
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(372 = (9/2)* - b°.
B = (9/2)% - (3/2)%
b=v18=4.24.
Therefore, the rectangular-coordinate equation is
(x - 3/2) L, Y

2y (/18)

=1.

Calculator Exercise 1: Solve for y and graph this on your calculator using
rectangular coordinates. Compare your graph to Figure 9.

Eccentricity in Rectangular Coordinates. Eccentricity is a parameter of standard

polar form but not of standard rectangular-coordinate form. In Section 9.2 where
rectangular form was used, ellipses and hyperbolas were defined with two foci and
the center was at the origin. In this section, they are defined using a directrix and one
focus, where the focus is at the origin. Of course, it is possible to relate the
parameters with which the two forms are expressed (problem B32). For example, the
eccentricity e of polar form has a simple rectangular-coordinate expression using the
notation of Section 9.2.

distance between foci
length of major axis

(9.3.8) If the major axis is horizontal, e = c/a.
If the major axis is vertical, e = ¢/b.

Recall that ¢ is the distance from the center to a
focus, and the length of the semi-major axis is a or
b(9.2.5and 9.2.7).

Example 7: Find the rectangular-coordinate
equation of a hyperbola centered at the origin, with <~
horizontal major axis, a =4 and e = 1.25.

The parameters of rectangular-coord_inates Figure 11: x4 - /32 =1.
form are a and b (9.2.5). We can use the given a [-10,10] by [-10,10].
and e to find c from 9.3.8, and then a and c to get b o=125
from 9.2.5 (Figure 11).

e=cla [from 9.3.8]

1.25 = ¢/4.
c=35,
@ +bB=c [from9.2.7]
42+ p? =52,

b=3.
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The equation is, from 9.2.7,

Example 8: Find the rectangular-coordinate
equation of an ellipse with ¢ = 0.7, one focus at
the origin, the other focus on the positive x-axis,
and semi-major axis 4 (Figure 12). /

\

’

The center is ¢ units from the focus, so the 239 :
center is at (¢, 0) where e = c/a from 9.3.8. \j
Solving "0.7 = ¢/4," we find ¢ = 2.8.

Also, b = a* - ¢* for a horizontal ellipse, so =57
b*=4*-28=8.16, and b = v8.16 = 2.857.
Plugging in to standard rectangular form (9.2.6):
(x - 2.8 A 1 Figure 12: e=.7,a =4,

42 2 8572 ' and one focus is at the

origin. [-10, 10] by [-10, 10].

Circles. Ellipses with very small eccentricities are almost circles. Circles have
eccentricity zero. But putting zero in for e in our polar forms yields "r = 0", an
equation that describes the origin which is a single point, not a circle. So, how does
the polar equation of a circle compare to the equation of an ellipse (9.3.2) with very
small eccentricity?

The polar equation of a circle centered at the origin is "r = k," where k is the
radius. 6 does not appear. Reconsider equation 9.3.2:

ed
1 -ecos O

r:

To represent "r = k" the "cos 8" term would have to disappear, so e would have to be
zero. But "ed" would have to be the radius &, which cannot hold if e = 0. So 9.3.2
does not hold for circles. But, we can imagine how, with smaller and smaller e, the
effect of the "e cos 0" would become negligible. But the "ed" term on the top would
also disappear unless we simultaneously adjust d (the location of the directrix) so that
ed remains constant. So, to get ellipses that are similar in size to a given circle with
fixed radius £, we need to increase d as we decrease e so that ed approaches k, the
radius we want. That forces d to go to "infinity" as e goes down to zero, so ellipses
that closely resemble circles have directrixes far from the origin (problems B21-23).

Conclusion. Polar coordinates make conic sections easy to describe if they have a
focus at the origin. The eccentricity, e, is an important parameter.



534  Section 9.3. Polar Equations of Conic Sections

Terms: parabola, ellipse, hyperbola, eccentricity, focus, directrix.

Exercises for Section 9.3, "Polar Equations of Conic Sections":

M"MIdentify the type of conic section, its eccentricity, and sketch its graph.

Al. r=1/(1-cos 0). A2. r=4/(2 - 2cos 0).

A3, r=1/(1 - 2cos 0). A4, r=6/(3 - 2cos 0).

AS. r=1/(1-.5cos 0). A6. r=5/(3 - 4cos 0).

M Identify the type of conic section, its eccentricity, and its directrix.

A7. r=5/(1+cos0). [dir:x=35] A8 r=1/(5+5sin0). [dir:y=1/5]
A9, r=7/(3-2s5in0). [e=2/3] Al0. r=50/(7+ 2sin 0). [dir: y = -25]

All. r=11/(9 + 10sin 6). [e=10/9] Al12. r=3/(2+3cos0). [dir:x=1]

~"Find a polar equation of the conic satisfying the given conditions. All have a focus at the origin

(pole).

A13. Parabola, directrix y = -2. Al4. Parabola, directrix x = -10.

AlS. e= .95, directrix x = 3. Al6. e=1, directrix y = -2.

Al7. Directrix y=4,e=1.5. A18. Directrix x = 10, e = 1.01.
Table of eccentricities and distances (in astronomical units) of the planets from the sun.
Mercury e =.206, a = .387. Venus e = .0068, a =.723.

Earth e=.0167,a=1. Mars ¢=.093,a=1.52.

Jupiter e=.048, a = 5.20. Saturn e=.056.a=9.54.

Uranus e¢=.047,a=19.2. Neptune e =.0085, a =30.07.

Pluto e =.2485, a =39.5.

Find a polar equation of the orbit of
Al19. Mercury A20. Mars A21. Venus. A22. Jupiter

A23. Find the polar-coordinate equation of the ellipse in Example 8.

AAAANAAN

B1. Do Discovery 1: Graph the equation in Example 3 (Figure 5) with a graphics calculator in polar
mode. Which quarter of the hyperbola appears first? Second? Explain why, mathematically.

B2. Find the eccentricity of the famous hyperbola: x*-3?=1.
B3. Do Discovery 2: Figure 6 displays the shapes associated with 2 different values of e. To getboth

pictures on about the same scale, the numerators had to be different. Why? Use a graphics calculator
to compare the graphs of

= — 2 and r= 2z
1-8cos® 1 -95cos 9’

Why, mathematically, is the second so much wider than the first?

B4. For an ellipse in the form 9.3.2, 2a = 1(0) + (), as in Example 5. a) Why isn't it /(0) - r(7)?
b) Express 2a in terms of  for a hyperbola in the form 9.3.2.
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B5.* [About 9.3.2 and 9.3.3] "r=f{cos 0)" denotes a composite function, for any function f. Because
of the "cos 0" part, it always has a certain symmetry. a) What symmetry does the graph have? b)
Why?

B6.* [About 9.3.4 and 9.3.3] "r={{sin 0)" denotes a composite function, for any functionf. Because
of the "sin 0" part, it always has a certain symmetry. a) What symmetry does the graph have? b)
Why?

B7. [Compare 9.3.2 and 9.3.3] a) Give the equation if the directrix is x = 3 and e = 2, using 9.3.3.
b) Graph it. ¢) Suppose we treat x = 3 as x = -(-3) and use 9.3.2. Give the equation. d) Graph it. e)
How do the two graphs differ? f) Explain the answer to part (¢) mathematically.

B8. [Compare 9.3.4 and 9.3.5] a) Give the equation if the directrix is y = 5 and e = 3 using 9.3.5. b)
Graph it. c) Suppose we treaty =5 as y=-(-5) and use 9.3.4. Give the equation. d) Graphit. ) How
do the two graphs differ? f) Explain the answer to part (¢) mathematically.

B9. Equations 9.3.2 and 9.3.4 look just alike except the first "cos" where the second has "sin". State
a relevant trig identity of the form "sin 8 = cos(0 - ¢)" and use it to explain why the second graph is
just the first graph rotated through 90°.

M The following equations yield hyperbolas on [0, 27t). Which angles yield the left branch of the
hyperbola?

B10. r=1/(1 -2 cos 0). B11. »=5/(1 -3 cos 0).

B12. For a hyperbola with horizontal axis, give the slopes of the asymptotes if the eccentricity is 2.
[m=%1.7]

B13. For a hyperbola with horizontal axis, show the slopes of the asymptotes are given by

m= xfer - 1.
Bl4.  Letr=6/(1-2cos 0). a) Use 9.3.6 to find a. b) Find  and then b/a. c) For which angle 6
is the denominator zero? d) What happens, graphically, as 6 approaches that value? e) Find tangent
of that angle. f) comment on why the answers to (b) and (e) are related.
B15. Ifthe slopes of the asymptotes of a horizontal hyperbola are +1/4, give its eccentricity.

B16. Ifthe slopes of the asymptotes of a horizontal hyperbola are +m, show its eccentricity is e= v/(m?
+1).

B17. For an ellipse, give the ratio of width to length if the eccentricity is 1/2.  [.87]
B18. For an ellipse with eccentricity e, show the ratio of width to length is V(1 - %).

B19. If the ratio of width to length of an ellipse is 1/3, give the eccentricity. [.94]

B20. If the ratio of width to length of an ellipse is r, show the eccentricity is V(1 - /7).
B21. If e =1 and the ellipse closely resembles a circle of radius 5, where is the directrix?

B22. If e = .01 and the ellipse closely resembles a circle of radius 3, where is the directrix?
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B23. Suppose two ellipses are very similar to a circle with radius 1. One has e = .02 and the other
has e = .01. Compare the locations of their directrixes. [Use the from 9.3.2, or work with 9.3.6.
Rough approximations are encouraged.]

B24. Derive 9.3 .4, paralleling the steps from which 9.3.2 was derived.
A Sketch the graph, locate the center, and determine the slopes of the asymptotes of:

1
B25.r=————  [m=x+14] B26. r= 1

—— = 4],
1-1.01cos8 1 + 1.2sin0 [m =+1.3]

M \Sketch the graph, locate the center, and determine the semi-major axis and the semi-minor axis
of
2 5

B27.r= — 2 [C:(24,0 B28. r= — 3 [C:(0,-69
T T T 7 G @40 " T+ 7smg © 069

~Find the rectangular-coordinate equation of a conic section with the given characteristics.

B29. e =1/2, one focus is at the origin, the other focus is on the positive x-axis, and the semi-major
axis is 3.

B30. =3, one focus is at the origin, the other focus is on the negative x-axis, and the semi-major axis
is 2.

B31. Suppose you wish to graph r = f0) using a graphics calculator, but it does not have "Polar"
mode. You may use "Parametric” mode, in which x and y are entered separately in terms of 0.
Because x = cos 0 and y = r sin 0, to graph "r = f{0)" you may enter:

x=L0)cos 8. y=£0)sin0.
To graph in parametric mode the graph in Example 3, what must you enter in for "x" and what for "y"?

B32. The definition of eccentricity is givenin 9.3.1 where ellipses and hyperbolas are defined in terms
of a directrix and one focus (instead of the two foci used in Section 9.2). a) Sketch an ellipse with
a focus at the origin and vertical directrix at x = -d. Label the rectangular coordinate parameters on
the sketch. b) Find d in terms of e, a, b, and c.

¢) Find e in terms of a, b, and c.

B33. a) Use the definition of e from 9.3.1 and rectangular coordinates to set up a rectangular-
coordinate equation for a parabola. b) Simplify it.

B34. a) Use the definition of e from 9.3.1, directrix x = -d, and rectangular coordinates to set up a
rectangular-coordinate equation for an ellipse with eccentricity e < 1. b) Solve fory. ¢) Lete=1/2
and d =3 in part (b) and graph the equation.

B35. a) Use the definition of e from 9.3.1, directrix x = -d, and rectangular coordinates to set up a
rectangular-coordinate equation for a hyperbola with eccentricity ¢ > 1. b) Solve fory. c) Lete=
2 and d = 3 in part (b) and graph the equation.



Absolute value

complex number 462
Archimedes, spiral 479
Argument

complex number 462

Cardioid 478
Circle
eccentricity 533
parametric equations 487, 488
parametric form 486
cis 464
Complex conjugate 468
Complex number 446, 455, 456, 474, 525
a+ bi form 456
absolute value 462
addition 458
argument 462
conjugate 468
division 468
exponential form 464
imaginary part 457
modulus 462
multiplication 459, 465
polar form 464
real part 457
trigonometric form 462, 464
Complex plane 457
Conic section 496
directrix 525
eccentricity 525, 532
ellipse 489, 507
focus 525
Hyperbola 507, 509
major axis 530
parabola 496
polar form 525, 526
Conjugate, complex 468
Coordinates
polar 525
rectangular 474

DeMoivre's Theorem 473
Direction

numbers 491
Directrix 525

parabola 497
Dot product 453

Index

Eccentricity
comnic section 525, 532
ellipse 523
hyperbola 523
Ellipse 489, 507
focus 507
major axis 512
minor axis 512
reflection 520
standard form 512, 514
Equations
parametric 485
Euler's Formula 464
Exponential form
complex number 464

Focus
conic section 525
ellipse 507
hyperbola 509
parabola 497
Fractal 473
Function
inverse parametrically 492
Functional form
graph 485

Graph
functional form 485
parametric 485
Hyperbola 507, 509
focus 509
reflection 520
standard form 515, 518, 520

1451, 455,456
Imaginary number 456
Inverse

parametric form 492

j451

Latus rectum
parabola 498
Limacon 479
Line
parametric equations 490, 491
Lithotripter 520
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Major axis 530
Modulus

complex number 462
Motion

parametric equations 485

Numbers
direction 491

Parabola 496, 497
equation 499, 500, 502
focus 497
geometric definition! 497
latus rectum 498
standard geometric form$ 500, 502
Parametric
equations 485
Parametric equations
circle 487, 488
line 490, 491
Polar
coordinates 525
Polar coordinates 474
pole 474
Polar form
complex number 464
Pole
polar coordinates 474
Projectiles 489

Reflection
ellipse 520
hyperbola 520
parabola 503

Spiral of Archimedes 479
Symmetry 480
about origin 480
about x-axis 480
about y-axis 480
point 480

Trigonometric form
complex number 464

Vector 446
1451
length 447
magnitude 447
not from physics 454
unit 451, 454
Velocity 448



