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446 Section 8.1. Vectors

CHAPTER 8

Other Topics

Section 8.1. Vectors

Many quantities, such as length and mass, can be described with a single
number, but some, such as velocity and force, cannot. We describe them with
vectors, which are two or more numbers listed in order. In physics, a vector is
equivalent to directed magnitude.

Example 1: A wind is 20 miles per hour from the
southwest (Figure 1). Using trigonometry, its
easterly component is 20 cos 45° = 14.1 and its .
northerly component 20 sin 45°, also 14.1. The /
wind can be described as a vector:
w = (20 cos 45°, 20 sin 45°) = (14.1, 14.1).

Wind velocity can not be described by a single /
number. It can be described by a magnitude (speed) ‘ ‘au
and direction, or, equivalently, as a vector by giving A '
its two components in primary directions. (Speed is "
not velocity because velocity also refers t0  Rigure 1: A wind toward
direction.) the northeast.

A vector can be represented by any line

segment of the proper length and direction (Figure
1), and all such line segments are said to be equivalent.

Notation: Vectors are often denoted by boldface letters such as v and w. If v has two
components, it may be written as an ordered pair: v = {v;, v, ). We use pointed
brackets to distinguish vectors from points. Some

texts just use parentheses: v = (v, v,).

w
Example 2: A wind vector is w = (50, 20) (Figure /j »

2). What is its magnitude (speed) and direction? - o
Using the Pythagorean Theorem, the

magnitude, |w], satisfies Figure 2: w = (50, 20)
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[wf* =507 + 20°
Iw|=53.85.

Using trigonometry, the counterclockwise angle 0 with the horizontal (the angle

north of due east) satisfies
tan 6 = 20/50 .
0=21.8".

Therefore the vector (50, 20) could also be described by “magnitude 53.85 at
angle 21.8°” (counterclockwise from the positive x-axis).

Angles for vectors are described with respect to the x-axis. However, directions
on the ground are usually described by “bearing” which is, in this case, the angle with
due north, which is 90°- 0 = 68.2°. The wind is 53.85 miles per hour in the direction
N 68.2° E (which is 21.8° north of east).

Figure 3 relates the components to the length and direction.

Definition 8.1.1: The magnitude or length of a
vector v = {a, b) is denoted |v] From the
Pythagorean Theorem (Figure 3),

M= va® +b°.
The angle with the x-axis, 0, satisfies

tan O = b/a, if a # 0.
In terms of its magnitude (length) and angle,

= (jv|cos 0, |v|sin 0).

Figure 3: v={a, b)
Definition 8.1.2 (Vector addition and
multiplication of a vector by a number): Adding vectors is done componentwise.
Let v={v,, v,) and w = (w,, w,). Then
v+ w= (v tw,, vtw,).
Multiplying a vector by a number is done componentwise.
clvy, vo) = {evy, evy) .

Example 3: Find (3, 10) + (2, 4).

3, 100+ (2, 4) = (5, 14)
Solve for x: (1, 5)+(x, 2)= (9, 7).

1+x=9 x=8.
A wind vector is w = (3, 10). If it doubles in magnitude, what will it be?

It will be 2(3, 10) = {6, 20).
Find v + w if |v]| = 7 and its angle with the positive x-direction is 30° and
w=(1.4,-1).

First write v in component form. v = (7 cos 30°, 7 sin 30°) = (6.06, 3.5 ).
Therefore v+ w =(6.06,3.5)+(1.4,-1)=(7.46, 2.5).
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Physics tells us that velocity vectors may be added "componentwise". For
example, when a plane flies through the air, the velocity of the air is added to the
velocity of the plane through the air to find the velocity of the plane with respect to
the ground.

Example 4: Suppose a plane flies at 150 I w

miles per hour relative to the wind with its ,

nose at bearing N 30° E (Figure 4, v). The ‘

wind is 40 miles per hour from S 70° W. (So |

the wind vector is pointing N 70° E, w) What

is the velocity of the plane relative to the v

ground? 150 V4w
Relative to the wind, the velocity vector

of the plane (which has direction 60° from the

horizontal) is 30
v = (150 cos 60°, 150 sin 60°) o0 W
=(75, 129.9). yo:

The velocity vector of the wind (which has ) _
direction 20° from the horizontal) is Figure 4: Velocity v,
w = (40 cos 20, 40 sin 20°) wind velocity w, and
=(37.6, 13.7). ground velocity, v+w.

Adding componentwise, the sum is

v+w=(75, 129.6) + (37.6, 13.7)
=(75+37.6, 129.6+13.7)
=(112.6, 143.3).
This is the ground velocity, which has

ground speed = V112.6* +1433% = 1822 (miles per hour)
and direction O satisfying

1433
tan6—112.6- 1273.

Because 0 is in the first quadrant,
0=51.8".
The direction is 51.8° north of east, which may be written "N 38.2 E."

The Parallelogram Law. Adding vectors has a simple geometric representation
(Figures 5A and 5B). Technically, vectors do not have locations (just magnitude and
direction), but they can be represented anywhere. To represent the sum of v and w,
represent v with its "tail" at the origin, and w with its tail at the "head" of v (Figure
5B). Then v+w is represented as the vector from the tail of v to the head of w. Figure
5B puts w in both places and shows why this method of addition is called the
"parallelogram law" (see Problem B21 for subtraction).
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w
v
Figure SA Figure 5B
V,W VvV, W, v+w
Vi, v, (W, ) W1, Vo) + (wy, wy) = (v Fwy, vytw,)

Theorem 8.1.3: A) |cv|=|c|lvl, where c is any constant.
B) |v+w| < |v]+|w], “the triangle inequality”

Figure 5B illustrates the triangle inequality. “A line is the shortest distance between
two points.” The distance from the origin to the tip of v+w is |v+w]. Theorem 8.1.3B
says this is less than or equal to the sum of the lengths of v and w.

In physics, F = ma, that is, force is mass times acceleration. Both force and
acceleration are vectors because they have direction as well as magnitude. If an
object is at rest, the total force on it is 0, the zero vector.

Example 5: A cart on an plane inclined
20° is kept from sliding down the plane by
a cable pulling along the plane (Figure 6A).
If the force of gravity on the cart is 500
newtons, what is the force of the cable on
the cart?

First pick a convenient coordinate )
system. We will pick the x-direction to be Figure 6A: A cart, gravity
along the plane and the y-direction to be and a cable.
perpendicular to the plane (Figure 6B).
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The force, F,, of the cable is
unknown, but it is entirely along the
plane, so the component perpendicular
to the plane is 0. Therefore,

F,={c, 0), for some c .
Using trigonometry, the force of
gravity can be "resolved" into
components.

F, =(-500 sin 20°, -500 cos 20°)
(The minus signs are because the
components are to the left and down.)

The third force is the plane
pushing on the cart, perpendicular to
the incline, so the x-component of that
force is zero. It is (0, d) for some d.

Because the cart is at rest, the
sum of the forces on it must be the
Zero vector.

(¢, 0) + (-500 sin 20", -500 cos 20°) + {0, d) = (0,0).
along the plane + into the plane + out of the plane = the zero vector.
So, adding all the x-components,
c+-500sin20°+0=0.

Figure 6B: An axis system, and
force vectors resolved into components.

Solving,
¢ =500 sin 20° = 171.0 (newtons).
The tension in the cable is 171 newtons (see problem A15 for d).

Example 6: A 20 pound object is suspended by two cables attached to A and B as
in Figure 7A. What are the forces exerted by the cables?
There are three forces, as represented in Figure 7B.

F
f
50 30°
20
Fy
Y
Figure 7A: An object Figure 7B: Three forces on

suspended by two cables. an object.
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Because the object is at rest, it has no acceleration and the total force on it must
be 0, the zero vector. Therefore, F, + F, + F, = 0, where
F, = (-|F,| cos 50°, |F,| sin 50°)
F, = {|F,| cos 30°, |F,| sin 30°)
F, =0, -20)
Adding the x-components,
-|F,| cos 50° + |F,| cos 30°+0=0.

cos 50°
*) Ile = lFll

cos 30°
Adding the y-components,
|F,| sin 50° + |F,| sin 30° -20=0.
Now there are two equations and two unknowns, |F,| and |[F,|. Use equation (*) to
replace |F,| in the second equation:

o

[F,| sin 50° + lFlI———S—?ﬁ sin 30° =20.

cos 50
co
Now there is only one unknown, |F,|.
(cos50°)(sin30%)
0s30° ) —20.
|F,| = 17.59 (pounds).
If we want F, in components, it is
F, = (-|F,| cos 50°, [F| sin 50°) =(11.31, 13.47).

IF,| (sin50° ¥

To find [F,|, use (*).
|F,| = 13.06, and F, =(11.31, 6.53) .

Standard Unit Vectors. "Unit" vectors are vectors of length one. The vectors (1, 0)
and (0, 1) are the "standard unit vectors." They are often given a special notation:

(8.1.4) i=(1,0 and j=(0, 1),

"i"

Note that i and j are in boldface type. For handwriting, an arrow over the top of
and "j" may serve instead of boldface. Any two-dimensional vector can be written
as a linear combination of i and j.

(8.1.5) (a, b) = ai + bj.

Example 7: (3, 5) = 3i + 5j.
5i-§=15,-1).

If the vectors have three dimensions, then "K" is used for the third vector:
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i=(1,0,0), j=(0,1,0),and k=0, 0, 1).

Conclusion: Vectors describe quantities, such as force and velocity, with more than
one dimension.

Terms. Vector, magnitude, length, direction.

Exercises for Section 8.1, "Vectors."

AAAA Evaluate .
Al (3,5 +Q, 4 A2. 4, 1)+(5,2) A3. (1,43)+(.5,3.7)
A4. (1.9,1.2)+(4.3,-2.5) AS5. 2(3,4) A6. 31,2

AAn Solve for (x, y).
A7. (1, 5§+ (x,»)=1(3,9) A8. 4,7+, y) =16, 12)
A9. &, y/+4,9)=(3,12) A10. (x,y) + (-1, 6)=(3, 8)

All. Find(1,2,3)+4,5,6). Al2. Find 2(1,2,3)-4, 5, 6).

A13. The airspeed vector of a plane is (125, 20 and the windspeed vector is (-20, -5). What is the
groundspeed vector?
Al4. The airspeed vector of a plane is (540, -40) and the windspeed vector is (-80, -30). What is the
groundspeed vector?

AlS. In Example 5, find d. [470]

ANANANANNA

B1. Draw a picture to illustrate the relationship between a vector and its length and direction.

B2. Let the vector v be of length » with direction 0 (counterclockwise) from the positive x-direction.
Give the vector v, written as an ordered pair.

A1 Find the magnitude and direction of the vector.

B3. (5, 2) B4. 4,-1) 1 BS. (-8, 6) B6. (87, 50)
A Find the vector as an ordered pair.

B7. Direction 30°, length 10. B8. Direction 45°, length 100

B9. Direction 150°, length 20. B10. Direction 100°, length 5.

B11. Suppose a plane flies at 550 miles per hour at bearing S 70° W relative to the wind. The wind
is 60 miles per hour from N 80° W. (So the wind vector is pointing S 80° E.) What is the velocity of
the plane relative to the ground?

B12. A plane flies with its nose headed northeast with airspeed 525 miles per hour. The wind is from
N 60° W at 65 miles per hour. What is the groundspeed and actual direction of flight?
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BI3. (See the figure.) A 400-pound weight is held
motionless on a (frictionless) inclined plane by a cable

pulling along the plane, which is at 15° from horizontal.
What is the tension in the cable? /‘Q//‘,

Bl4. (See the figure.) A 250-pound weight is held
motionless on a (frictionless) inclined plane by a cable
pulling along the plane, which is at 22° from horizontal. For B13 and B14
What is the tension in the cable?

BI5. (See the figure.) A 100-pound weight is supported by two cables, one at 40° from vertical, and
the other at 20° from vertical. Find the tension in the cables.

50 100

For B15 For B16 For B17

B16. (See the figure.) A fifty-pound weight is supported between two posts 4 feet apart by cables
strung from the same height, one 2 feet long and the other 3 feet long. Find the tension in the cables.

B17. (See the picture.) Two people lift a 100-pound basket by pulling upwards (and slightly outward)
on its handles. If each pulls at angle 20° from vertical, how much force does each person use?

B18. (See the figure.) A 200-pound weight is suspended from a 10-foot cable. |
How much force is required to pull it one foot to the side?

B19. The dot product of vectors v = (g, b) and
w = (c, d} is denoted vew (read "v dot w") and given by

(8.1.6) vew=ac+ bd.

a) Find (3, 2)(4, 10).

b) Find (1, 0)s{0, 1).

c) Theorem: vew = |v|]jw|cos 0, where O is the angle between v and w.
Find the angle between (3, 1) and (2, 4). '

d) Find the angle between (2, 1) and (-1, 2). For B18

e) If two vectors are perpendicular, their dot product is zero. Why?

f) Find a vector perpendicular to (1, 5).

g) [To prove the theorem] Express the square of the distance between the points (a, b) and (c, d).
Then treat the points as tips of the vectors v and w and express the square of the distance between
them using the Law of Cosines, recalling |v| and |w| are the lengths. Equate the two squares of
distances and simplify to obtain the theorem.
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B20. [Unit vectors] a) Prove "If v is a non-zero vector, then v/|v} is a unit vector."
b) Prove: "Any vector can be written as a constant times a unit vector."
¢) Write (2, 3/ as a constant times a unit vector.

B21. Subtraction of vectors has a "parallelogram law" type picture. a) Sketch a picture like Figure
5 to illustrate v and w. On it sketch -w. Treat the vector v-w as v+(-w) and sketch it.

b) Find the vector v-w in the parallelogram.

c) Note how the picture illustrates v = (v-w)+w.

B22. [Vectors that are not from physics.] A store sells medium, large, and extra large shakes. To
describe the number of shakes sold each hour we might use a vector with three components, one for
each size of shake. The vector (2, 1, 5) would refer to 2 medium shakes, 1 large shake, and 5 extra
large shakes. Of course, we must agree on the order in which the numbers are listed. Suppose medium
shakes cost 90 cents, large shakes cost 1.10, and extra large shakes cost 1.40. a) Find the total cost
of (2,1, 5).

b) Find the total cost of (a, b, ¢).

c) See the definition of "dot product"” in B19 (Imagine it extended to three components). The answer
to part (b) is the dot product of which two vectors?

B23. [Vectors that are not from physics.] A researcher studies the effectiveness of a new treatment.
Ten people are in the study, six of whom are treated and four of whom are "controls" and not treated.
The ten people are listed in order and the corresponding treatment vector has a "1" if that person was
treated and a "0" if not treated. The treatment vector is

0,1,1,0,1,1,1,0,0, 1).

The outcomes are scored on a scale of zero to ten. The outcome vector is

(3,5,8,4,7,2,9,5,2, 7.

a) Find the averages of the outcomes for treated people and for people who were not treated. Which
average is higher?

b) See the definition of "dot product” in B19 (extend the definition to ten components). Write the
average outcome for treated people in terms of the dot product of the two vectors.
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Section 8.2. Cofnplex Numbers

Complex numbers arise in the context of quadratic equations such as "x* = -4"
and "x*+2x+2=0." Since x* > 0 for all real-valued x, the equation "x> = -4" cannot
have any real-valued solutions. The usual way to solve "x* = -4" would be to take the
square root, but negative numbers such as -4 do not have real-valued square roots.
Similarly, the usual way to solve a quadratic equation such as "x* + 2x + 2 =0" is to
use the Quadratic Formula which yields

S21422-40)(2) -2+4-4

2(1) 2
Again, the square root of a negative number appears.

Since the square roots of negative numbers are not "real" numbers, one
reasonable approach to solving these two equations is to say they have no solutions.
Mathematicians accepted this as certainly true and completely obvious for many
centuries.

But, it is equally obvious that you cannot take 7 stones away from a pile of 5
stones. Unfortunately, "obvious" facts have a habit of obstructing the development
of mathematics. But, as you know, when negative numbers were finally invented,
they turned out to have many useful but unsuspected applications (although not to
taking 7 stones from a pile of 5 stones, which cannot be done). For example, now we
are all familiar with negative numbers in the contexts of temperatures, money,
checking accounts, and credit-card balances.

Another, bold, approach to solving these quadratic equations is to create
solutions by the simple device of inventing a solution to the equation "x* = -1." Call
that invented solution "i" (pronounced as it looks, "eye"), so i =-1. Assume that the
usual properties of combinations of arithmetic operations apply to this new type of
number. Then (2i)* = 2% = 4/ = 4(-1) = -4. So 2i will be a solution to the equation
"x? = -4." Similarly, -2i will be a second solution.

Reconsider the "solution” to the equation "x* + 2x + 2 = 0" provided by the
Quadratic Formula. Using our new-found square root of negative four and the usual
arithmetic operations on this new type of number,

~2+4-4 -2%2
2 2
With this abstract approach all quadratic equations that have no real-valued solutions
will have two "complex-valued" solutions.
You may be wondering if this approach yields anything important, or if it is just
a way to create a useless solution to a useless equation. Well, you can probably guess
the answer. The reason math books have section on complex numbers is, of course,

-1t
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that in some subjects they turn out to be extremely useful. For example, they are an
essential fixture of electrical engineering (where our "i" is called "j", because they
need to use the symbol "i" for something else). They are critical to the study of laser
physics. In fact, in any subject where electro-magnetic waves occur, the theory is
likely to use complex numbers. And, in
mathematics, complex numbers have remarkable

connections to trigonometry and rotations of two- G

dimensional figures. Like the applications of w, S \"\ k
negative numbers, the applications of complex \\(" :«_><>
numbers have appeared in unanticipated places. ‘}‘\ . <

For example, they are now used in the generation Q

of fractals. Fractals are fantastically complicated
images that arise from remarkably simple computer Figure 1: A Fractal image.
instructions (Figure 1, problem B29). Because of
their promise for encoding a large amount of visual information in a few lines of
computer code (and because they can be entrancingly beautiful), they are currently
receiving much attention.

We cannot develop the subjects of electrical engineering, laser physics, or
fractals here. But, every subject has to start somewhere. Complex numbers start with
i.

Definition 8.2.1 (Complex Numbers): There is a solution to "x*> = -1" called i. The

complex numbers consist of all numbers of the form "a + bi" where "a" and "b" are
real numbers.

The use of the letters "a" and "b" to represent real numbers in this form is
traditional. If we wish to denote a complex number by a single letter, we will use "z"
or "w", never "a" or "b". So, in traditional notation, z = a + bi.

Complex numbers can be added, subtracted, multiplied, and divided according
the usual properties of these operations on real numbers.

Example 1: Some complex numbers in "a + bi form" are

1+i [a=1landb=1],

7-5.67i [a=7and b=-5.67],

-1/2-i/4 [a=-1/2and b=-1/4.],
Other complex numbers in "a + bi form" are

i [a=0andb=1],

3 [@a=3and b=0],and

0 [a=0and b=0].
The complex numbers include the real numbers. All real numbers are complex
numbers, but not all complex numbers are real numbers.

The solution to "x* =-1," i, is often said to be an imaginary number. With a good
imagination, you can make it "real" to you. Just work with it enough and, like other
abstractions, it will take on reality as its usefulness becomes apparent. Because
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i* = -1, i is often called "the square root of negative one."

Numbers of the form "bi" where "b" is real are said to be pure imaginary
numbers. In the complex number "a + bi," "q" is the real part and "bi" is the
imaginary part.

Two complex numbers "a + bi" and "c + di" are said to be equal if and only if
a = c and b =d, that is, if their real parts are the same and their imaginary parts are
the same.

Real numbers can be located on a one-dimensional number line. Complex
numbers cannot. They are two-dimensional and require two dimensions to locate.

To graph a complex number let the horizontal axis be the real axis and the
vertical axis be the imaginary axis. Use a square scale. Plot z = g + bi in the usual
position of the ordered pair (a, b) (Figure 2). When the plane is used to plot complex
numbers in this manner it is called the complex plane. Figure 3 plots a few complex
numbers.

a+bi -
"""" ke 342 4 o143
b ° T
: ie
—— T
—i
—alai 1 2-4
-+ [
Figure 2: a+ bi Figure 3: A few complex numbers.
[-5, 5] by [-5, 5]. [-5, 5] by [-5, 5]

The idea that complex numbers consist of two ;
distinct parts is critical to working with them. For T ®3+4i
example, to add or subtract two complex numbers, T '
add or subtract their real and imaginary parts T f i
separately. There is no trick to adding or -—----~-r---------e---- S
subtracting complex numbers. Simply consolidate ——t—t f } —
like terms. T
Example 2: (2 +i)+ (1 +3i) T

=2+1+i+3i T
=3+ 4i (Figure 4). B
Subtraction is done similarly: Figure 4: Adding
R+)-1+3))=2-1+i-3i=1-2i. complex numbers.

(2+) + (1+3i) = 3+4i.
[-5, 51by [-5, 5]
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The abstract form of this simple idea is next.

Property 8.2.2 (Addition and Subtraction):
(a+bi)+(ctdiy=(a+c)+(b+d)i.
(@a+bi)-(c+di)=(a-c)+(b-d.

Graphically, adding has two common interpretations. To add z + w, plot z and
then imagine the location of z to be a new origin (Figure 4). Then plot w relative to
the new origin. That will be the position of z + w relative to the original origin. This
is much like adding numbers on the real number line, where, to add 2 + 3 you may
find position "2" and treat it as a new origin. Then the position "3" relative to that
new origin is position "5" relative to the original origin.

3+4i
T1+3i T1+3i
[ w
2+1i + 2+
2
Figure 5: 1+ 3iand Figure 6: The sum of
2 +i. [-5, 5] by [-5, 5]. 1+3iand 2 +1.

[-5, 5] by [-5, 5]

This addition may be visualized another way. Plot both z and w and draw arrows
(vectors) from the origin to their locations (Figure 5). Then slide the vector for w so
its tail is at z (Figure 6). Then the head of the vector w will be at z + w. This is the
so-called "parallelogram" approach because the construction can create a
parallelogram (Figure 6). By the Commutative Property, z + w = w + z, and the
drawing for these two expressions creates opposite sides of a parallelogram.

Graphically, the function f{z) =z + w ("add w'") produces a translation
(that is, a location shift).
Points are translated the distance and direction of w from the origin.

Multiplication. The key to multiplication of complex numbers is that the
Distributive Property and the Extended Distributive Property still hold. Therefore,
all you have to do is "multiply out" the expressions, consolidate like terms, and
remember that 2 = -1.
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Example 3: (3 +2i)(7 +4i)=21+12i + 14i + 8i* [using FOIL, 3.4.2]
[Recall that i = -1, so 8i% = -8]
=21-8+ (12 + 14)i
=13+ 26i.

Example 4: (1 -i)(3 +2i)=3+2i-3i-2i
=342+ (2-3)i
=5-1i

This process can be expressed abstractly.

a+bi
ctdi
adi + bdi *
ac + bci
ac + adi + bci + bdi* = (ac - bd) + (ad + be)i.

Property 8.2.3: (a + bi)(c + di) = (ac - bd) + (ad + bc)i.

Rather than memorize this identity with all its dummy variables, simply use the
Extended Distributive Property (FOIL) to multiply complex numbers.

Property 8.2.4: If p > 0, the solution to 22 =-p is z==+iVp.
By the multiplication property 8.2.3,
(iVpy = (Vp)(ivp) = i*(Vp)* = -p.
So ivp is a solution to "x* = -p." -ivp is another.

Square roots of negative numbers may appear in the Quadratic Formula.

Example 5: Solvex’ +4x+8=0.

Use the Quadratic Formula.
- 4% .,J47 - 401X
F+4x+8=0 iff x= 20 (D)
—4+-16 -4+i16
iff x = _ 416 [by 8.2.4]
2 2

o TAr4

It x = 5

iff x=-2+2i.

The answer is in "a + bi" form. The last line follows by straightforward division.
As expected, multiplication or division of a complex number by a real number, c,
simply multiplies or divides both parts. This is stated abstractly next.



460 Section 8.2. Complex Numbers

8.2.5 (Corollary to 8.2.3): c(a + bi) = ca + cbi
(a + bi)lc = alc + (ble)i, ifc # 0.

Example 6: 3(1 +i) =3 + 3; (Figure 7).
(-2 +4i)/4=-1/2+i,wherea=-1/2and b=1 (Figure 7).

Figure 7 illustrates that multiplying a complex number by areal number changes
its distance from the origin, but not its direction from the origin. Multiplying by ¢> 1
expands the point away from the origin by a factor of c. Multiplying by c between
0 and 1 contracts the point toward the origin.

2 +4i L
1T 3+3i=3014+1) T 4430
(14)-2+i)=\ | B+i
~-12+1i T 147
1 3+i=
(-3 +i)
—4-3i=
~1(4 + 3i)
Figure 7: Multiplying by Figure 8: Multiplying
a real number. by -1.
[-5, 5] by [-5, 5]. [-5, 5] by [-5, 5].

Multiplying by -1 reverses the direction of the point from the origin.

Example 7: -1(4 + 3i) = -4 - 3; (Figure 8).
-13 -i)=-3 +i (Figure 8)

Subtraction can be regarded as addition of the negative.
z-w=z+(-Dw=z+(-w).
That is, we can distribute the minus sign like usual. Graphically, we may interpret
z - w, using the parallelogram idea, as z + (-w), where -w has the length of w but the
opposite direction.

Example 8: (1+2i)-(3+i)=-2+i (Figure9).

(1 +2§)-(-2-2i)=3 +4i (Figure 10).

For the first example, Figure 9 plots 1+2i, 3+i, and -(3+i). Then the
parallelogram process is used to subtract 3+i by adding -(3+i).

For the second example, to subtract -2-2i, plot it and then -(-2-2i). Then add
-(-2-2i).
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3+4i

T1+2i T %
_2/_,.“'/"/‘ 347 T ~(-2-2i)

~(3+1)
-2-2i
Figure 9: Figure 10:
(142i) - B3+H)=-2+i (1+2i) - (-2-2i) = 3+44.
['5’ 5] by ['53 5] ['59 5] by ['5’ 5]

So far we have seen that addition, subtraction, and multiplication by a real
number are straightforward to interpret in the complex plane. The unexpected
properties lie ahead.

Multiplication and Rotation. In the complex plane multiplication has a truly
remarkable interpretation which is not at all evident from the algebraic form of
multiplication expressed in Property 8.2.3. We will show that multiplication by a
complex number corresponds to a rotation and a contraction ot expansion toward
or away from the origin. Before we formalize this thought, consider a simple
example.

Example 9: Consider multiplication by i. Multiply several complex numbers by i
and inspect their graphs to see what the graphical effect of multiplying by i is.
Any complex numbers will do. For instance, consider 2 [P], 4i [Q], and -3 - i [S]
(Figure 11).
2(i)=2i [P']
(4i)i =4 =-4 [Q'] R &l
(3-Di=-3i-#=1-i [§] > Tp
Every time the product is the same distance away 2i 4=,
from the origin as the original number, but rotated ]
/2 (90°) counterclockwise. Multiplying any
number by i rotates the number by n/2 (90°). 3-i %5

This is related to why i* = -1. Think of * as i o
times i. Rotating i 7t/2 yields -1. # = -1. +

Figure 11: Complex
numbers multiplied by i.
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Trigonometric Form. To see why multiplication
and rotation are related, we use an alternative
method to describe the position of a complex
number in the complex plane. The idea is to
describe the point by its distance from the origin
and its angle with the positive real axis (Figure
12). Because angles and distances are used,
complex numbers described this way are said to
be in "trigonometric form" which is also known
as "polar form" (the pole is the origin).

The distance from z = a + bi to the origin is
called its modulus (or, its absolute value), which
is often denoted "|z|" or "r" (for "radius," when r
is positive). By the Pythagorean Theorem, Figure 12: r and O for
(8.2.6) = m —r "trigonometric form" of

complex numbers.
[Memorize this picture. All
of 8.2.7 follows from it.]

Z=a+bi

r 1
3b=r§n9

]

a=rcoso

z=0if and only if = 0.

Example 10: |3 +4i|= 32+ 47 = 25 = 5.

F1-3i= {1+ (-37 = V10
12.34i] = 2.34.
[-5.67| = 5.67.

The angle the line from the origin through z makes with the positive real axis is
called the argument of z ("arg z"). Being an angle, the argument of z is often denoted
by "8" (Figure 12). All the results in the next list follow immediately from the
picture. You do not have to memorize all these facts -- just remember the picture. "A
picture is worth several complex-number facts."

(8.2.7) Letz=a+ bi. Then
argz=0 [which is simply the usual notation].
tan O = b/a, if a # 0. O is not defined if z = 0.
cos 0 =a/r and sin O = b/r, if z # O (that is, if  # 0).
a=rcos0 and b=rsin0,ifz # 0.
If a > 0, 0 is in the first or fourth quadrant.
If 2 <0, 0 is in the second or third quadrant.
Ifa=0and b>0, 0 =7/2.
Ifa=0and <0, 6 =-1/2.

The second last line mentions "7t/2" rather than "90°" because trigonometric
form is usually expressed using radian measure (which has advantages over degree
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measure when applied to advanced material). Actually, 0 is not uniquely determined,
since adding 27t (360°) to any argument yields another coterminal angle. But,
whenever convenient, we prefer to use 0 between - and T, or, sometimes, between
0 and 27.

Example 11: arg(1 + i) = /4.
To see this, think of a picture of the location
of 1 + i in the complex plane (Figure 13). From
the picture (or 8.2.7),tan 0 =b/a=1/1=1. So, 0
=tan’'(1) = /4. , .
arg(3) = 0, because positive real numbers — 2
make angle 0 with the positive x-axis. Or, from
82.7,tan 0 =b/a=0/3=0,50 0 =tan'0 = 0.
arg(-2) = m (Figure 13), because negative
numbers make angle  with the positive x-axis.
In the example "arg(-2)" the equation for
0 from 8.2.7 (tan 6 = 0) has two important Figure 13: 1+4,-2,1.
solutions: 0 and . We want 6 = 7 rather than 0 [-5, 5] by [-5, 5].
= 0, because a < 0. By inspection, z = -2 is at
angle 1 from the positive real axis. Real numbers have argument O or .
arg(i) = n/2 [second last line of 8.2.7, Figure 13].
arg(2 + 3i) = tan ' (3/2)
[=.983 radians = 56.31°, Figure 14].
We expressed this answer as "tan (3/2)" because
itis not a famous angle and the given decimal form 2+
for it is not illuminating.
arg(-2+i)=tan'(-12) + &
=-464 + 1 =2.68
[=153.43°, Figure 14].
Fortunately, we do not often do examples that are
this tricky. Forz=-2 + i, tan 0 = 1/(-2) = -1/2. But
0 is not simply tan "'(-1/2) because 0O is in the Figure 14: 2+ 3i, -2+ i.
second quadrant and tan *(-1/2) is in the fourth 5 5]by[-5, 5.
quadrant (expressed as a negative angle). So
adding 7 gives the second quadrant angle with the
same tangent value (recall identity 7.2.10 that says tangent repeats every T radians).

ie 1+

2+ 3i

Complex Numbers in Trigonometric Form. Using "cos 0 =a/r" and "sin 0 = b/r"
from Figure 12 (or 8.2.7), we can rewrite "a + bi."

(8.2.8) a+ bi=rcos 0 + (r sin 0)i = r(cos O + i sin 0).
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"r(cos 6 + i sin 0)" is the trigonometric form (or "polar form") of a complex number
z=a+ bi, where r = |z| as in 8.2.6 and 0 is an argument of z as in 8.2.7.

We write "i sin 0" rather than "(sin 0)i" to avoid the extra parentheses.

The factor "cos 6 + i sin 0" appears a lot in this subject. Since only the "6"
varies in the "cos 6 +i sin 0" factor, it is often abbreviated to emphasize the 6. Some
authors write "cos 0 + i sin 0" as "cis 0," where the three letters c, i, and s abbreviate
the phrase "cosine plus i sine." However, this abbreviation is not common in higher
mathematics.

Exponential Form. Actually, there is no

real need to abbreviate the very common — e——————————
ex.pregsion "cos 6 +1i SiI.l 0" at all, because 169" conveniently abbreviates

this trigonometric form is both correct and "cos 6 + i sin 6." "Exponential form"
illuminating. Nevertheless, it is often and "trigonometric form" are two
abbreviated because it is a bit long, It turns equivalent notations. Everything

out, in calculus, that the exponential ::géi?i‘;&%:gﬁgg;ﬁﬁs
function w1th. base e that we studied in nothing more or less than

Chapter 5 yields a shorter and more "trigonometric form" rewritten using
convenient equivalent expression. We 8.2.9 and 8.2.11.

cannot prove it here, but the key identity is ———————————
"Euler's Formula":

(8.2.9) e®=cos 0 +isin 0.

This is a complex number on the unit circle in the complex plane, at angle 6 from
the positive real axis (Figure 15). Since cos T = -1 and sin 7 = 0, the famous
equation which relates e, i and n follows:

(8.2.10) el™=-1,
j= gin/2
The short exponential form follows immediately
from 8.2.8 and 8.2.9: ef®
(8.2.11)  re™®=r(cos 0 +isin 0). i 8 :
el = —

This point is r times as far from the origin and
in the same direction as e *® on the unit circle
(Figure 15). Formula 8.2.11 gives two notations for all
the same information.

Figure 15: cos O +isin O
= ¢'® on the unit circle
in the complex plane.
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Example 12: 3 =3(cos 0 +isin0)=3e".
The real number 3 is at angle 0 from the positive
real axis (Figure 16).

-4=4(cosm+isinm)=4e™
The real number -4 is at angle n from the
positive real axis (Figure 16).

2i =2[cos(n/2) + i sin (n/2)] =2 e ™.

The imaginary number 2i is at angle n/2 from
the positive real axis (Figure 16).

1 +i=v2[cos(n/4) + i sin(n/4)] = V2 e™,
because r = V(1> + 1%) = v2 and tan 6 = 1/1.
Therefore 6 = n/4, since 0 is in the first quadrant
(Figure 16).

Example 13: 1 + V3 = 2[cos(n/3) + i sin(n/3)]
=2 i1|:/3,

because » = V(17 + v3%) = 2 and tan 6 = V3/1.

Therefore 6 = /3, since 0 is in the first quadrant

(Figure 17).

2 - 3i = V13 expli tan "(-3/2)] = V13 &%,
because r = V(2> + 3%) = V13 and tan 6 = -3/2.
Therefore, 0 = tan"'(-3/2), (which is about -.98)
since 0 is in the fourth quadrant (Figure 17). The
notation "exp(i0)" instead of "e " in this

example allows us to see the tiny exponent more

clearly.

Multiplication. Multiplying complex numbers
in trigonometric or exponential form yields a
remarkable and elegant result:

2gin/2 0\/56""/4

& { Il fl Il Il &

v T T T ¥ T v

T
4gin 3e0/

Figure 16: Points expressed
in exponential form
[-3, 5] by [-5, 5]

T 2 ein/a

1 vis ekp[i tan-1 (~3/2)]

Figure 17: Points expressed
in exponential form
['57 5] by ['53 5]

To multiply complex numbers in trigonometric or exponential form,
multiply their moduli and add their arguments.

Remember that something similar holds for real numbers: e*e¥ = e*", which says to
multiply exponentials we may add their arguments (5.2.6 or 5.1.1). With complex
numbers, addition of arguments is addition of angles. With complex numbers, the
angle of a product is the sum of the angles of the numbers. The next theorem states
this in both trigonometric and exponential notation. It looks long, but it is easily

interpreted.
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Theorem 8.2.12:
ri(cos 0, +i sin 0,) r,(cos 0, + i sin 0,) = r,r,[cos(0, + 0,) + i sin(0, + 6,)].

[, exp(iB,)][r, exp(i0,)] = r,r, exp[i(6, + 6,)].

Formula 8.2.12 has two lines which say the same thing in two different
notations. The second is shorter and shows that exponential notation is convenient.
The theorem explains why multiplying by a complex number produces a rotation.
Adding angles is equivalent to rotating about the origin.

Example 9, revisited: Multiplying by i produces a rotation of 7/2 (90°) as we saw
in Example 9 (Figure 11). The modulus of i is 1 and its argument is 1/2 (90°). So,
i=1exp(in/2), according to 8.2.11. Multiplying any complex number by i leaves the
modulus unchanged (since » = 1) and adds 7/2 to the argument, so the product is the
original number rotated by /2 (problem B19).

Proof 0f 8.2.12: This proofrelies on regular multiplication of complex numbers in
"a + bi" form (8.2.3), and then uses the sum-of-angles trigonometric identities for
sine and cosine (7.3.1A and B). Note that "trigonometric form" is virtually "a + bi"
form, but with the "a" and "b" written using trigonometric functions. The first line
of the proof expresses the equivalence of the two forms given in 8.2.11.

[, exp(i0))][7, exp(iB,)] = ri(cos 0, + i sin 0,) r,(cos 6, + i sin 0,),
Now, factor out the r, and the ,, and multiply out the rest using FOIL (8.2.3).

= rr, {(cos 0,)(cos 0,) + i(cos 0,)(sin 0,)
+ i(sin 0,)(cos 0,) + i(sin 0,)(sin 0,)}.

Now, two terms of the sum are real and two are imaginary. Recall i* = -1. Grouping
like terms, this
= r,r, {(cos 0,)(cos 0,) - (sin 0,)(sin 6,)
+ i[(cos 0,)(sin 0,) + (sin 0,)(cos 6,)]}.

Look up the two "sum identities" for cosine and sine (7.3.1A and B). Note how they
fit perfectly. Therefore, this is

=riry {cos(6, + 0,) +isin(6, + 6,)}
= r,r, exp[i(0, + 6,)].

The proof is complete.
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Aside. It is truly remarkable that "imaginary" numbers should have such a close
connection to trigonometry, which began as the study of triangles. Who would have
thought that trigonometry and the square root of negative one would be related by
such as basic concept as multiplication? Mathematicians have discovered over the
ages that abstract concepts that are suggested by mathematics (such as negative
numbers and the square root of negative one) often turn out later to be useful and
practical in unexpected real-world contexts. Mathematicians use this argument to
support "pure" research -- because they know that, no matter how "pure" research
may seem at first, there is always a chance that important practical applications will
follow over time.

Example 14: Multiply several numbers by the
complex number z = v2 + V2 and note the
graphical effect.

For instance, multiply 3, 1 + 24, and -2 - i, by
that number (P, Q, and S in Figure 18).

Visually, this is easy. The absolute value of the
factor z is 2, so the products will be twice as far
from the origin. The angle (argument) of z is ©/4
(45°), so the new points will be rotated /4. Done.
These effects are clearly visible in Figure 18.

To compute the numerical values of the R

products in rectangular form takes some work. _ e .
Here are the three results: Figure 18: Multiplication by

Pz=3(/2+i/2) = 32+ (3V2)i [= P, Y2+iV2 [-55]by[5, 5],
Figure 18].

Qz=(1+20)(V2+iV2)=-V2+(3V2)i [=(', Figure 18].

Sz=(2-)(V2+iV2)=-V2-(3V2)i [=S', Figure 18].

Let z be any complex number. Graphically,
multiplying a number by z produces a
rotation around the origin
and an expansion away from the origin or a contraction toward the origin.
The rotation is through the angle arg(z).
The expansion or contraction is by a factor of |z|.

Complex Conjugates. When solving quadratic equations, complex numbers arise
in "complex conjugate” pairs.
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Definition (8.2.13): The complex conjugate of w
a+bi is a- bi. The complex conjugate of z is

often denoted by z ("z bar") (Figure 19).

<I

In the Quadratic Formula, the square root term ]
has a "plus or minus" on it: -0

- b1t b’ - 4dac vb* - 4ac

2a 2a w

NI

-b
= —1
2a

If the interior of the square root is negative, the Figure 19: Complex
plus sign yields one complex number and the conjugates.
minus sign yields its complex conjugate.

Graphically, the complex conjugate of z is symmetric with z about the real
(borizontal) axis. Their real parts are the same and their complex (vertical) parts are
opposites (Figure 19).

Example 15: The complex conjugate of "1 + 2;" is "1 - 2i". Their product is
(1+2i)(1-2i)=1+4=35, areal number. The cross product term drops out.
Also, by 8.2.6, |1 +2i]= 5. S0,z z = |z,

The product of a complex number and its conjugate is always a real number, and
it is always the square of the modulus (absolute value).

(8.2.14)  z z =(a+ bi)(a - bi) = a* + b* = |z, a real number.

Multiplying it out shows the product is a real number. There is also an illuminating
trigonometric explanation. A complex number and its complex conjugate have the
same modulus, but opposite angles (Figure 19). So, from 8.2.12, multiplying them
together yields the product of the moduli (that is the |z* part) and the sum of the
angles, which is 0 (0 + -0 = 0). Angle 0 implies the product is a real number.

Division. So far we have discussed addition, subtraction, and multiplication.
Dividing complex numbers by real numbers is like multiplication by real numbers;
it is done term-by-term, as expected (8.2.5). However, division by a non-real
complex number is not quite so easy. In trigonometric form, division is, as expected,
the inverse of multiplication, but there is a trick to obtaining the quotient in "a + bi"
form.

In trigonometric or exponential form, to divide complex numbers, divide the
moduli and subtract the argument of the denominator from the argument of the
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numerator (problem B25). That is, assuming r, # 0,

7, exp(i6)) (rlj _
8.2.15) ———~=-+ -
(8.2.15) r, oxp(8,) 7, exp(i(g, - 6,)
6exp(i-37€) 63
Example 16: (Figure 20) )
2exp(zz)
s (53] i)
exp| i 3°2))° €Xp| 112 . 3ght/12
5

Division of complex numbers in a + bi form Figure 20: 6 exp(in/3),
is tricky when the object is to express the result 2 exp(i/4), and their
in a + bi form. The key is to multiply both the quotient.
numerator and denominator by the complex
conjugate of the denominator.

2+
Example 17: Write 3 21 - in g + bi form.

2+i ( 2+z’)( )- ( 2+i)(3+2i) _(2+9)(3+2i)
3-2i \3-2i/7 7 \3-2i\3+2i) 9+4
Now the division problem has been converted to a straightforward multiplication
problem. Use 8.2.3 and 8.2.5 (problem A25).
The point of using the complex conjugate is to make the denominator a real
number, so that the remaining division will be by a real number. To finish off,
multiply out the top using 8.2.3. In general, the process can be described by the next

theorem.

. a+bi_(a+bi)(c—di)
Theorem 8.2.16: o di \eral\eTa

_ (a+bi)(c-di)
c? +d?
ac+ bd + (bc- ad)i
c?+d?

This is close enough to "a + bi" form. The pattern is too complicated to
remember in this abstract form. Instead, simply remember to multiply both the top
and bottom by the complex conjugate of the bottom.
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1+
Example 18: Evaluate, in a + bi form, 1—-z—

1+i (l+i)(1+i) _0+2
1-i \1-d\1+4) "+ "
Problem B20 asks for a trigonometric, visual, explanation of why this quotient
reduces to 7.

Conclusion. Complex numbers are expressed in three common forms, "a+ bi" form,
trigonometric (polar) form, and exponential form. Trigonometric and exponential
forms are especially valuable for multiplication and division, but are not convenient
for addition or subtraction. Multiplication of complex numbers is closely related to
rotation in two dimensions.

Terms: complex number, a + bi form, real part, imaginary part, complex plane,
modulus, argument, trigonometric form, exponential form, complex conjugate.

Exercises for Section 8.2, "Complex Numbers":
Al.* Given two complex numbers in "a + bi* form, how can you obtain their sum?

~nnn Sketch the location in the complex plane of

A2 a) P=2+i b) O=-1+2i ¢) R=3i

A3. a) P=2-i b) O=-2i ¢) R=-1-i

A4, a) P=cosm+isinT. b) Q= cos(n/3) + i sin(1/3)

A5, a) P=cos(-1/2) +i sin(-1/2) b) Q= cos(31/4) + i sin(3n/4)

A6. a) P=¢'™* b) O=e'™.

A7. a) P=¢e'™ b) Q=e'™

A8. a) P=3¢i™ b) Q=2e""

A9. a) P =3[cos(nt/6) + i sin(n/6)]. b) O = 2[cos(3n/4) + i sin(31/4)]

Al0. a) P=4[cos(5T/6) +isin(5T/6)].  b) Q= 3[cos(-n/4) + i sin(-1t/4)]

AN Simplify:

All. a) 4+i+5+7i b) 4+i-(5+7i)

Al2. a) (4 +i)(3 +2i). b) (4 + /(3 - 2i).

Al3. 2) (2 +3i)5-i). b) 2+3)/(5+1).

Al4. a) (1+3i)i b) (1 +2i)i.

AAn Write the given complex number in exponential form,

Al5.a) i b) -1 c) 2+2i d) 1+4i ) -1+iv3.
Al6. a) -i b) 1 o) 1+iv3 d)-1+i. e) 2+3i.

Al7. Write the complex numbers in A15 in trigonometric form.
Al18. Write the complex numbers in A16 in trigonometric form.

AAA Convert these to "a + bi" form.
Al9. a) 3exp(in/6) b) 4exp(i3n/4).  A20. a) 5exp(Ti/4). b) 2 exp(i2n/3).
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AMAA Simplify:
A21. [2 exp(in/4)][6 exp(i3T/4)] A22. [5 exp(in/12)][2 exp(in/6)]

... 20exp(37i/4) o 3exp(wi/2)
A23. Divide: dexp(zil3) A24. Divide: ———————-—-—60exp (7i16)

#A25. Simplify the expression from Example 17: (2 + §)(3 + 2i)/(9 + 4).
A26. Draw and label a picture of the complex plane to illustrate "e™ = -1."

A27. What is the argument (angle) of negative real numbers in the complex plane? Explain how
multiplying a real number by a negative real number fits the idea of rotation in 8.2.12.

AAANAANA

B1.* Sketch a picture that illustrates how to convert back and forth between "a + bi" form and
trigonometric or exponential form.

B2.* a) State the two most important facts for converting a number in "a + bi" form to a number in
trigonometric or exponential form.

b) State the two most important facts for converting a number in trigonometric or exponential form
to a number in "a + bi" form.

B3.* Given two complex numbers in "g + bi" form, how can you obtain their product?

B4. Exponential and trigonometric forms are very similar. Are there any essential differences?

AMAN The pictures locate P, Q, and R in the complex plane. Reproduce the picture and find the
location of the resulting point when each is multiplied or divided by the indicated complex number.

Qe P
ARe
op Qe e P
Q
? oR
BS. Multiply by i B6. Multiply by i B7. Multiply by 1 + i.
op
Q o P Q P ?
A oR «R
L

B8. Divide by i B9. Divide by 2i B10. Divide by 1 + i
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B11.* a) Thinking only of real numbers, what is the graphical effect on the number line of the
function, "multiply by ¢"?

b) In the complex plane, what is the graphical effect of the function "multiply by w"?

B12. Using the points in problem BS, illustrate the result of "add i" to each. Assume the window is
['5: 5] by ['5: 5]

B13. Using the points in problem B7, illustrate the result of "add 1 - i" to each. Assume the window
is [-5, 5] by [-5, 51.

B14.* What is the graphical effect of the function "add w"?

B15.* Given two complex numbers in "a + bi" form, how can you obtain their quotient?

B16.* Given two complex numbers in exponential form, how can you obtain their product?

B17.* Give the "trigonometric form" explanation of why i* = -1.

B18. The modulus function has properties on the complex numbers that the absolute value function
has on the real numbers. So it can reasonably be called the "absolute value” function on the complex
numbers. Prove a) The modulus of a real number is its absolute value.

b) [z = 0.

B19. Use abstract notation and 8.2.12 to show that multiplying z by i produces a rotation of 71/2, as
illustrated in Example 9 (Figure 11) and as argued below 8.2.12.

B20. Explain, trigonometrically and visually, why the quotient in Example 18 is simply i.
B21. The Quadratic Formula gives two solutions to a quadratic equation. Express their product.
[The remaining problems are challenging.]

AAAAA The pictures below illustrate P and Q on a square scale, where O = wP. Estimate the
solution for the unknown complex number w. (You do not need to know the scale!)

[ ] Q Q. Pe
opP

oP

*Q

B22. B23. B24.

B25. Prove 8.2.15 on division of complex numbers in trigonometric form.

B26. Find Vi in "a + bi" form.
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B27. [Part (b) is a famous theorem about complex numbers known as DeMoivre's Theorem.]

a) Use trigonometric form to express z* in terms of the modulus and argument of z.

b) Use exponential or trigonometric form to express z* in terms of the modulus and argument of z.
¢) Recall that 1 = ¢®™, for any integer k. Use 3 different values of & to obtain 3 distinct solutions to
"z’=1." d) Plot them in the complex plane.

B28. a) Use the ideas in B27 to find n "n® roots of unity" by solving "z"=1."
b) Ifall n n™ roots are plotted in the complex plane a pattern results. What pattern?

B29. Fractals. Fractal images are increasingly common because fast computers are able to do the
immense amount of computation required to create the pictures. Here is the idea behind the particular
fractal in Figure 1. It uses repeated composition with the same simple function, {z) = 2% - 1. Consider
all possible complex numbers, z, one by one. Pick one, apply f'to it, then apply fagain to the image,
and then again and again. So the initial point is repeatedly moved in the complex plane. Now consider
the question, "Does it move further and further from the origin, (move off to "infinity") or does its
orbit (sequence of images) stay in a bounded region near the origin?" Theoretically, we could do this
for every point in the plane and keep track of the points that move off to infinity. There will be a
region of such points, and the "Julia set" is the boundary of that region, which is highly irregular for
most functions, f; even when f appears to be simple. For example, Figure 1 graphs the Julia set of the
very simple f given by fz) = 7* - 1. Here is the problem: Find all the points in the complex plane
("fixed points") that have the same image as argument when this function is applied.
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Section 8.3. Polar Coordinates

Polar coordinates are a way to locate points in the plane. Rectangular
coordinates use two numbers to locate positions in the plane, one for the horizontal
position and one for the vertical position. Polar coordinates also use two numbers,
one for the distance from the origin and the other for the angle with the positive x-
axis.

Fix a point for the origin, O (Figure 1). The P
origin is the pole of "polar coordinates." Fix a ray r
(halfline, OA4, like a positive x-axis) from the pole
and label it with a scale. To locate the point P in
this "polar coordinate system," give the ordered 0 A
pair (r, 0), where r is a directed (positive or
negative) distance and O is an angle measured
counterclockwise as illustrated in Figure 1.

Itis possible to associate many different angles
with any point P. Figure 2 illustrates (3, 1/6).
Figure 3 labels the same point with a negative
angle. The angles are coterminal (terminate in the

Figure 1: Polar coordinates.
P is the point (7, 0).

same place).
(~3,77/6)
P P P
3 3 1 3 6 T
e ey e
T \\J ] ‘5/
Figure 2: P = (3, t/6) Figure 3: P=(3,-111/6) Figure 4: (-3, 71/6)
['4: 4] by ['47 4] ['49 4] by [-43 4] ['43 4] by ['49 4]

Usually we think of "#" as representing distance from the origin, but it is actually
"directed" distance because r can be negative. Figure 4 illustrates the same point as
Figures 2 and 3, but with the angle in the opposite direction and with » negative.
Figures 2, 3 and 4 show that one major difference between rectangular coordinates
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and polar coordinates is that points do not have a unique representation in polar
coordinates.

In rectangular coordinates the grid is
determined by setting x equal to a
constant (for the vertical grid lines) and y
equal to a constant (for the horizontal grid
lines). In polar coordinates the grid is
determined by setting r equal to a constant
r, (to obtain circles with radius r, centered
at the origin) and setting O equal to a
constant 0, (to obtain lines through the
origin at angle 0, with the positive x-axis,
Figure 5).

Figure 5: The polar
coordinate grid.

Example 1: Graph "r = 2" in polar
coordinates.

Since 0 is not mentioned, 0 can be
anything. Figure 6 graphs all points 2 units from the origin. The graph is a circle.

/2 ”

Figure 6: r = 2. Figure 7: 0 = n/6.
[-4, 4] by [-4, 4]. [-4, 4] by [-4, 4].

Example 2; Graph "0 = 7/6" in polar coordinates.
Since r is not mentioned, r can be anything, including negative values. Figure
7 graphs all points at angle 7t/6 with the positive x-axis.
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Conversion Between Coordinate Systems. The relationship between polar and
rectangular representations follows easily from Figure 8. Conversion from polar to
rectangular coordinates yields a unique rectangular coordinate representation:

(8.3.1) x=rcosB and y=rsin0.

P=((X'e ;/ )
= (7,

Converting from rectangular to polar

coordinates does not yield a unique polar y=rsin®
coordinate representation. Given the
rectangular representation (x, y), r and O
satisfy

X=rcos

(8.3.2) P =x*+)* and tan 0 = y/x.

These equations yield two solutions for r
(positive or negative) and an infinite number Figure 8: Polar and

of solutions for 0, including two in [0, 27). rectangular representations of P.
This means we must make some choices.

Usually, but not always, we chose the positive value of 7. Then we choose 0 to match
the quadrant of (x, y).

Example 3: Give the polar-coordinate representation of the rectangular-coordinate
point (1, 1) (Figure 9).

From 8.3.2,

#=1+1"=2 and tanO=1/1=1.
Now, make some choices. Our preference for
positive » and first quadrant angles leads us to
prefer » = v2 and © = tan™' 1 = 7/4. So one polar T N
representation of the point is (v2, T/4).

V2, n/4)

(1
Example 4: Give the polar-coordinate -1 Vi 1
representation of the rectangular-coordinate point
(-1, -1) (Figure 9). -11
P=(C12+(-1’=2andtan O = (-1)/(-1)=1. V2574
These are the same equations for r and 0 as in
Example 3, but the point is different. Clearly we Figure 9: (1, 1), (-1, -1)
must choose a different solution because the point 414 their polar-coordinate
is in the third quadrant. representations.
Again, choose 7 = v2. Then we must choose a [-2, 2] by [-2, 2]
third quadrant angle 6 with tan © = 1. Tangent
repeats every T radians, so tan(1/4+1) is also equal
to 1. A polar-coordinate representation is (V2, n/4+7) = (V2, 57/4). Another is
(+v2, ©/4).
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To convert from rectangular coordinates, if we choose r > 0, a polar-coordinate
representation of (x, y) is

(\/xz + y? ,tan"(-i*)) if (x, y) is in the first or fourth quadrant, and
(8.3.3)

(\/xz +y* ,tan™ (%) + 7:) if (x, y) is in the second or third quadrant.

Because angles that differ by 27, or any — se————

multiple of 2, are coterminal, apy ,6 Instead of memorizing these formulas,
may be replaced by O + 2n7. Thatis, i jeam Figure 8, which contains the

polar coordinates, information of all the formulas in this
section.
(8.3.4) (,0)and (r, 6 + 2nm) L S

represent the same point.

Also, since angles that differ by 7 are opposite, the same point is obtained by also
using the opposite directed distance.

(8.3.5) (r, 0) and (-r, O + ) represent the same point.

Example 5: Give several alternative polar-coordinate representations of (5, 27/3).

One alternative is to add 27 to the angle: (5, 27/3) = (5, 21/3+21) = (5, 87/3).
Another alternative is to subtract 27: (5, 27/3) = (5,27/3 - 21) = (5, -47/3). A third
alternative is to use a negative r as in 8.3.5: (5, 27/3) = (-5, 21/3 + 1) = (-5, 57/3).

Conversion from polar-coordinates to rectangular coordinates is not tricky.

Example 6: Give the rectangular-coordinate representation of the polar-coordinate
point (2, ©t/6) (Figure 2).

From 8.3.1, x =r cos 0 = 2 cos(1/6) = 2(vV3/2) = V3. y=rsin 0 =2(1/2) = 1.
The unique rectangular-coordinate representation is (v3, 1).

Well-known Polar-Coordinate Graphs. Most graphs are given in rectangular
coordinates, but there are occasionally reasons to use polar coordinates. Section 8.3

on complex numbers has an application to multiplying complex numbers. Polar-
coordinate graphs are most appropriate in applications where the distance to a
particular point is key. For example, when studying the effect of the gravitational
pull of the sun on the planets, the distance of the planets to the sun is important. By
locating the origin at the sun, that distance becomes r and the position in orbit around
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the sun is described by (r, 0). We will study this polar representation of orbits in
Section 9.3 on conic sections.

To express polar-coordinate functions, 7 is usually treated as a function of 0
(rather than 6 as a function of 7). Here are some graphs that are easy to express in
polar coordinates.

Example 7: Graph r = cos 0 in polar coordinates.
The graph is the circle in Figure 10. We can
show it is a circle by converting to rectangular
coordinates.
Multiply by r to obtain
¥ =rcos 0. : .
By 8.3.2 and 8.3.1, this is -1 12 /1
2+y=x
P-x+3y*=0. -1+
2 -x+1/4+y=1/4.
(- 1722 +y* = (1/2)%
This is the standard form (3.1.13) of a circle Figure 10: 7 = cos 6.
centered at (1/2, 0) with radius 1/2. [-2, 2] by [-2, 2].
Since cos 0 repeats every 2, there is no need 0<B8<2or0<0<r.
to use a domain larger than [0, 27t) (one complete
revolution). Actually, this particular graph is
complete after only half a revolution. The first quadrant angles yield the top half. In
the second quadrant cosine is negative, so = cos 0 is negative. Therefore, rather
than yielding points in the second quadrant, second quadrant angles yield points in
the opposite quadrant, the fourth quadrant. These form the bottom half of the circle.
Then, when 0 is a third quadrant angle, cos 0 is still negative and the points in the
first quadrant are retraced. Finally, when 0 is a fourth quadrant angle, cos 0 is
positive and the fourth quadrant points are retraced.

Calculator Exercise 1: Watch the

graph of r = cos O develop on a If your calculator does not have a "polar”
graphics calculator using domain coordinate graphing mode, you may use
[0, 27). Which points are created first? ~ | parametric” mode instead. To graph
Which are created last? r=f(0)" parametrically, simply let

: x=£0) cos 0 and y = f0) sin O.

For example, to graph "r = cos O"
Example 8: Graphr=1 +sin 0. parametrically,
See Figure 11. This shapeis called ~ letx = (cos 6)” [this is r cos 6] and
a "cardioid" from the Greek "kardia" y = (cos 0)(sin 0) [this is  sin 0].
meaning "heart." It is not convenient to  E—— ——————————————
express in rectangular coordinates.
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-
= 9

Figure 11: »=1 +5sin 0. Figure 12: r=2-cos 0.
[-2, 2] by [-2, 2]. [-4, 4] by [-4, 4].
0<0<2m. 0<0<2m.

Example 9: Graph r=2 - cos 0.

In contrast to Example 8 (» = 1 + sin 0), here 7 is never zero. This shape is
called a "limacon," as are other shapes with similar equations (Problems B17-20.
Some even have two loops, one inside other (problems B18 and B19).

Example 10: The simple equation "r = 0" forms the "Spiral of Archimedes." In it

the distance from the origin equals the angle, so as the angle increases the curve
spirals out (Figure 13) (problem B42).

54

—h
n
T

/] S . l
3T -
Figure 13: A Spiral of Figure 14: r=sin(30).
Archimedes. r= 0. [-2, 2] by [-2, 2].
[-10, 10] by [-10, 10]. 0<0<2m.

0 < 0. Points for 6 > 12
are off the window.

Example 11: Various leaf shapes can be described by "r = sin(n0)" for various
integer values of n. Figure 14 illustrates "r = sin(30)."
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Calculator Exercise 2: Watch the graph of "r = sin(30)" develop on a graphics
calculator. Which leaf develops second? (problem A33).

Symmetry. Symmetry about the x- or y-axis is often visible in polar-coordinate

graphs (Figures 10, 11, and 12). "cos 0" is symmetric about 0 = 0, which is the x-

axis, so equations expressed in terms of "cos 0" have graphs that are symmetric
about the x-axis (Figures 10 and 12, see also problem B2). "sin 0" is symmetric
about 6 = ©/2, which is the y-axis, so equations expressed in terms of "sin 0" have

graphs that are symmetric about the y-axis (Figure 11, see also problem B3).

Example 12: Figure 15 exhibits the graph of r =1
+ sin(20). It uses the sine function, but its graph is
not symmetric about the y-axis. Why not?

The function "sin 0" is symmetric about 7/2.
But the argument of sine in the expression "1 +
sin(20)" is not O, it is 20. So symmetry occurs
about 0 such that 20 = 1/2, that is, about 6 = n/4
(45°, the line y = x). In Figure 15 you can see the
symmetry about the diagonal line 0 = ©/4.

Another type of symmetry in Figure 15 is
point symmetry about the origin -- for every point
there is another equidistant on the opposite side of
the origin. That is, when (r, 0) is on the graph, so
it (r, © + m). This always happens when r is a
function of sine or cosine of 20, as in Figure 15
(Problem B4).

There is another simple cause of point
symmetry. The two points (, 0) and (-, ) are
point symmetric about the origin. Therefore, for
any f{0), the graph of "r* = f0)" will be point
symmetric about the origin because the negative of
any r that solves it will also solve it (problems
A37, A38, and B27).

Scale: The graphs of "r = f{0)" and "r = cA0)"
differ by the scale factor c. The second graph is ¢
times as large, expanded radially.

Example 11, modified: Figure 14 gives the graph
of "r=sin(30)" from Example 11. Figure 16 shows
the graph of "r = 2 sin(30)" would be twice the
size, expanded away from the origin.

Figure 15: =1+ sin(20).
['29 2] by ['29 2]
0<06<2m.

Figure 16: r = 2 sin(30).
[-2, 2] by [-2, 2].
[Compare with Figure 14.]
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Conclusion. The relationship between rectangular and polar coordinates is
illustrated in Figure 8: x=rcos 0,y =r sin 0, 7 = x* + 7, and tan O = y/x. Polar-
coordinate representations of points are not unique.

Exercises for Section 8.3, "Polar Coordinates":

A The point is given in rectangular coordinates. Convert it to polar coordinates with » > 0 and
0<0<2m.

Al.(2,2) A2.(-2,0) A3.(0,4) A4. (0,-3)
A5.(3,0) A6.(-2,2) A7.(1,V3) A8.(v3,1)
A The point is given in polar coordinates, using radians. Convert it to rectangular coordinates.
A9. (3, /2) Al0. (4, -1/2) All.(2,0) Al2. (5, m)
Al3. (4, n/4) Al4, (6, /3) Als. (2, T/6) Al6. (-2, 5/6)
A~ The point is given in polar coordinates. Give three alternative polar-coordinate representations
of the point.

Al7. (2, m) Al8. (0, m/2) Al9. (5,0) A20.(-4,0)
A Sketch the graph.

A21. r=5. A22. r=4 A23. 6=7/12 A24, O0=-1/4

~an Use the cited figure to sketch the graph

A25. r=13 cos 0 (Figure 10) A26. r=2+ 2 sin 0 (Figure 11)

A27. r=1-(cos 0)2 (Figure 12) A28. r=5sin(30) (Figure 14)

AN Determine the length of one leaf.
A29. r=45in(30) A30. r=17 cos(20)

A31. Compare the graphs of "r=f{0)" and "r = 5A0)."

A32. Watch the graph of r = sin(20) develop on a graphics calculator using domain {0, 27t). a) The
points that appear in the fourth quadrant are associated with angles in which quadrant? b) How can
that be?

A33. Do Calculator Exercise 2: Watch the graph of r = sin(30) develop on a graphics calculator
using domain [0, 27t). a) Which leaf develops second? b) Which values of 0 yield points in the
second leaf? c) The points that appear in the third quadrant are associated with angles in which
quadrant? d) How can that be?

A34. "r=1+ sin 0" can be regarded as "r = f{sin 0)." Give f.

A35. "r=2-cos 0" can be regarded as "r = f{cos 0)." Give f.

A36. "r=sin 0" can be regarded as "r = f{sin 0)." Give f.

A37. a) Graph " =0,0 < 0 < 2n." b) What symmetry does it have?

A38. a) Graph"¥=cos 0." b) Give all the symmetries it has.
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ANANANANA

B1.* Sketch a figure that exhibits how to convert between rectangular and polar coordinates.

*B2:a) "Draw a picture to itlustrate-why (r, 0)-and (r;-0) are symmetric-about the x-axis.
b) Draw a unit-circle rectangular-coordinate picture to illustrate why cos(-0) = cos 0.
¢) If r = f{cos 0) for some f (as in Figures 10 and 12), and (r, 0) is on the graph, what other point is
automatically on the graph? Why? d) Sketch a figure of your choice (your choice of f) to illustrate
the resulting symmetry about the x-axis.

B3. a) Draw a picture to illustrate why (r, ©/2 + 0) and (r, 7/2 - 0) are symmetric about the y-axis.
b) Draw a unit-circle rectangular-coordinate picture to illustrate why sin(n/2 + 0) = sin(n/2 - 6). ¢)
If » = f{sin 0) for some f (as in Figure 11), and (r, 7/2 - 0) is on the graph, what other point is
automatically on the graph? Why? d) Sketch a figure of your choice (your choice of f) to illustrate
the resulting symmetry about the y-axis.

B4. a) Draw a picture to illustrate why (r, 0) and (r, 0+7) are point symmetric about the origin. b)
If r = f{sin(20)) for some fand (r, 0) is on the graph, why is (r, 0+7) automatically on the graph?
[Hint: "sin(e+27) = sin " is the relevant trig identity.]

c) Sketch a figure of your choice (your choice of f) to illustrate the resulting point symmetry about
the origin.

AAa The figure locates P = (r, 0). Sketch the figure and on it locate

B5. a) A=(-r, 0). b) B=(r,-0). ¢) C=(r,0+n) d)D=(r, 0+71/2)
B6. a) 4=(2r, 0). b) B=(r,0-n/2) c) C=(r,-0) d)D=(-r0)
. :
Figure for BS Figure for B6

B7. Express "x = ¢" in polar coordinates. ~ B8. Express "y = k" in polar coordinates.

AN Sketch the graph of
BY. r=sin0 B10. r=1+cos 0 Bll. r=2-5sin0 B12. r=cos(30)

M (Following B9-B12) Each of the graphs in B9-B12 is the same shape as a graph in an example
in this section, but rotated about the origin. For each give the figure number of the similar graph and
give the rotation from the text graph to the new graph.

B13. ProblemB9. B14. Problem B10. B15. Problem B11. B16. Problem B12.
AN Sketch the graph.

B17. r=3-2sin0. B18. r=2-3sin6.

B19. r=2-3cos 0. B20. r=2+cos 0.

B21. r=3 sin(26). B22. r=4 cos(20).

B23. r=4 sin(40). B24. r= 5 cos(40).

B25. =5 cos(20) B26. r="7cos(30).
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B27. a) Draw a picture to illustrate why (r, 0) and (-, ) are point symmetric about the origin.
b) If ¥ = f{0) and (r, ) is on the graph, what other point is automatically on the graph? Why? c)
Sketch a figure of your choice to illustrate the resulting point symmetry about the origin.

B28. The graph of "r = f{sin(20))" is symmetric about 8 = /4 for any . a) Why?
b) Give an f(your choice) and sketch the graph, including the line of symmetry.

B29. The graph of "r = flcos(20))" is symmetric about the x-axis for any £ a) Why?
b) Give an f (your choice) and sketch the graph, including the line of symmetry.

B30. Suppose we wish to graph "r = f{sin(30)" for some /. There will be a line of symmetry of the
graph in the first quadrant. a) Use trig to show which line it is.

b) Sketch "r = sin(30)" and note the line of symmetry on the graph (To extend this result, see also
Problem B41).

B31. Suppose we wish to graph "r = f{cos(30))" for some /. There will be a line of symmetry of the
graph in the first quadrant (not just © = 0). a) Use trig to show which line it is. b) Sketch
"r = cos(30)" and note the line of symmetry on the graph (To extend this result, see also Problem
B40).

B32. Look at graphs of » = sin(20), r = sin(30), and r = sin(40).
a) Guess how many leaves the graph of » = sin(n0) has for integer values of n.
b) Look at a graph of r = sin(50) to check your guess. Was your guess right for n = 57

B33. Let L be the line x = -2. Let P be a point to the right of line L. a) Find a polar-coordinate
equation for the set of all points P such that the distance from P to the line L is equal to the distance
from P to the origin. b) Solve for ». ¢) What shape is the curve?

B34. Let L be the line x = -3. Let P be a point to the right of line L. Find a polar-coordinate
equation for the set of all points P such that the distance from P to the line L is twice the distance
from P to the origin. Solve for 7.

B35. Let L be the line x = -3. Let P be a point to the right of line . Find a polar-coordinate
equation for the set of all points P such that the distance from P to the line L is half the distance
from P to the origin. Solve for r.

B36. Recall that the rectangular-coordinate graphs of “sin x" and "cos x" have the same shape.
Either can be expressed as the other shifted left or right. Now consider the graph of any equation
"r = flcos 0)" for some f (for instance, Figure 10, 7= cos 6 and Figure 12, r =2 - cos 8). a) What
does the graph of "r = f{sin 8)" [cosine is replaced by sine] look like compared to the old one? State
this result clearly. b) State the relevant trig identity. c) Explain why the trig identity justifies your
result in part (a).

B37. Consider any graph with equation "r = f{sin 6)" for some f (for instance, Figure 11,
r=1+sin 0). a) What does the graph of "r = f{cos 8)" [sine is replaced by cosine] look like
compared to the old one? State this result clearly. b) State the relevant trig identity.

¢) Explain why the trig identity justifies your result in part (a).

B38. Suppose a graph is symmetric about both the x- and y-axes. Prove that it must be point
symmetric about the origin.
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B39. Suppose the unit square with sides connecting (0, 0), (1, 0), (1, 1), and (0, 1) [rectangular
coordinates] were expressed in polar coordinates by "r = f{0)." Would the graph of "r = 20)" be
the graph of a square, or would the shape change? Indicate why or why not.

B40. Suppose we wish to graph "r = ficos(30))." For any /there will be lines of symmetry of the
graph because of the symmetry of cosine. a) Find all those the lines of symmetry.
b) Sketch "r = cos(30)" and note the lines of symmetry on the graph.

B41. Suppose we wish to graph "r = f{sin(30))." For any f'there will be lines of symmetry of the
graph because of the symmetry of sine. a) Find all those lines of symmetry.
b) Sketch "r = sin(30)" and note the lines of symmetry on the graph.

B42. One of the most famous problems of geometry is to find a procedure that will trisect any angle
(that is, divide it into three equal angles). It has been proven that it cannot be done with "Greek"
rules, that is, using only a compass and straightedge. However, given a Spiral of Archimedes, any
angle can be trisected. How? [By the way, the Spiral of Archimedes cannot be constructed with a
compass and straightedge.]

B43. Suppose we wish to graph "r = ficos(n0))." For any f, there will be lines of symmetry of the
graph because of the symmetry of cosine. Find all those lines of symmetry.
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Section 8.4. Parametric Equations

Parametric equations are useful for describing motion. Motion produces change,
and calculus is the mathematical subject which studies change. So, parametric
equations are useful in calculus.

The usual type of graph is described in "functional" form, that is, y is given as
a function of x by an equation of the form "y = f{x)." If this type of equation is used
to describe a path of a moving object, two severe limitations leap to mind. One is
that, because fis a function, the path can have only one y-value for each x-value, so
the functional equation cannot describe a non-functional path such as in Figure 1.

Figure 1: A path that Figure 2: The routes of two
cannot be described boats. Do the boats meet?
functionally by "y = f{x)."

A second limitation of a functional description of a path is that it does not
contain information about when the object was at any point on the path. Figure 2
shows two paths, the route of a smuggler's boat from offshore to the coast and the
route of a patrol boat. Will the patrol boat intercept the smuggler's boat?

We cannot tell. Figure 2 does not have information on when the boats will be
at the various locations described by the paths.

Parametric equations use a parameter (often "¢" for time)
and two equations of the form "x = f{r) and y = g()" to describe
the (x, y) points on the path in terms of the parameter,

so that location and time are related. This contrasts with a functional description of
the path in which the y-value is described in terms of the x-value alone.
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Parametric Equations of Circles. There is more than one way to describe a circle.
A circle centered at the origin with radius » has "standard form"

Ly =7,

according to 3.3.3. The so-called "functional form"
requires y to be given in terms of x. Solving for y,
the circle is given by

y=iw/r2—x2.

This is the form commonly entered into graphics
calculators. Another approach is to describe x and
y separately in terms of some parameter, say, "0"
or "¢". Figure 3 reminds us that in polar coordinates
x=rcosOandy=rsin0.

Example 1: Suppose a wheel of radius 5 rotates
counterclockwise 1 radian per second. Describe the
position at time 7 of a point on the circumference,
if its initial position is at the rightmost point on
the circle.

The speed of rotation and orientation are
such that 6 = ¢ in the usual polar coordinate
system. The radius is 5, so parametric equations
for x and y are given by

x=5cost and y=5sin¢.

Figure 4 plots the path with the addition of labels
relating position to time.

Calculator Exercise 1: Learn how to use
"Parametric" mode on your calculator. For
example, plot the graph in Figure 4 and watch it
develop as ¢ increases (problem Al, B24).

rcos 6
=X

x
r
rsinf=y
o |

Figure 3: x=rcos 0
and y = r sin 0.

5

t=2 t=1
r=3//\t=0
-5 5
\jtr.s
t=4
-5

Figure 4: A circle of
radius 5.

x=5cost. y=Ssint

[-10, 10] by [-10, 10].

Parametric equations give x and y in terms of ¢. It may be possible to convert
parametric form to functional form by eliminating the z.

Example 1, continued: Letx =35 cos z and y = 5 sin ¢ be a parametric description
of a path. If we wish to describe the path without reference to time, we can take the

two equations and eliminate .
Squaring x and y and adding the result,

 +y? = (5 cos £)? + (5 sin £)* = 25(cos’t + sin’) = 25.



Parametric Equations. Section 8.4. 487

Of course, "x* + y* = 25" is the equation of the circle with radius 5 centered at the
origin.

8.4.1) x=rcost and y=rsint, 0 < t<2m,

are parametric equations of a circle centered at the origin with radius 7.

Example 1, continued further: If we want a different speed than one revolution in
27 units of time, we can replace "#" with some function of ¢. For example, let
x =5 cos(2nf) and
y =5 sin(27tf).
Now, as ¢ changes from 0 to 1 the arguments of
sine and cosine change from 0 to 2T, so one 5|t=1/4
revolution occurs in 1 unit of time, which is quite
a bit faster than in Example 1. The relationship
between x and y is unchanged, but their _f=12
relationship to time is changed (Figure 5). The - 5
increase in speed is easy to see as the picture

develops on a graphics calculator (try it). (T

t=0

More about Example 1: The previous parametric
descriptions are of uniform motion about the circle. Figure 5: x =5 cos(27?)
If we want to describe the same path, but with and y = 5 sin(27s).
some sort of accelerating motion, we can replace .10, 10] by [-10, 10].
"t" with some function of ¢, for example, "¢2".
Let

x =15 cos(t?) and

y =5 sin(t?).
Again, the relationship between x and y is not

changed. But the angle (angle £, playing the role of
0 in polar coordinates) is increasing more and
~ more rapidly (Figure 6). t=11/2_{5 ,_,
time angle change in angle during t=1/2
t 2 the previous 1/2 second pr- =1i=o
0 0
12 1/4 1/4 tﬂ\J
1 1 3/4 -5
32 9/4 5/4
2 4 7/4
The rotation is speeding up. Figure 6: x =5 cos(t?)

In this example the "#" of Example 1 has been and y = 5 sin(z?).
[-10, 10] by [-10, 10].
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replaced by "#" in both equations. If "#" is replaced in both equations by the same
function of ¢, the graph will still be a circle. The relationships of x to time and y to
time would change, but the relationship of x to y would not (problem B4).

For any function f,

(8.4.2) x =r cos(f{t)), and
y =r sin(f{¢)),

are parametric equations of a circle centered at the origin with radius r (problem B5)
if the range of fincludes the interval [0, 27). [Otherwise it might be just part of a
circle.]

Example 2: Suppose a rod 15 centimeters long is
pinned to a rotating wheel at a radius of 5
centimeters (point 4, Figure 7). The piston (point P)
at the other end of the rod slides vertically up and
down. Describe the path of point P.
The position of P depends upon the angle 6 in

the figure. The motion is vertical, x = 0, regardless ﬂ s
of 0. The vertical component of P can be S
determined in more than one way. We could use the \ /
Law of Cosines. Or we could treat the y-value as
OC plus CP. By trigonometry, OC is 5 sin 0 and
CA is 5 cos 0. Now, CP can be determined with the
aid of the Pythagorean theorem: CP?>+ C4* =152

15

A

Figure 7. Point P, which
moves vertically, is

connected by a rod of
CP= 15" - (5c0s6)’. length 15 to a point, 4,
Therefore, adding OC and CP, that rotates with radius 5.

y=5sinf+ J152 - (5cos 6)?
Now, suppose the wheel rotates 20 times a second. 20 revolutions is 20(2 ) radians.
So 8 = 20(2m)z. Parametric equations of the motion of P are given by

x=0 andy = 5sin(407t) + |/15* - (5sin(407t))*.

Figure 8 plots the vertical component of the motion as a function of time (problem
A2).
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20} 5T
t=x 1 t=0
15
- + 5
10} i

Figure 8: The vertical Figure 9: The ellipse described
position of P in Example parametrically by x=5 cos ¢
2 as a function of time. andy=2sint.

[0, .2] by [5, 25]. [-10, 10] by [-10, 10].

Example 3: Letx =5 cos ¢ and y =2 sin ¢. Graph the curve and find y in terms of x.
The graph is the ellipse in Figure 9. We can see that it is an ellipse by
eliminating ¢. Divide by the constant and square.
(x/5)* = cos’t. (y/2)* =sin’t.
Adding, since sin’t + cos’t = 1, we obtain
2 2

which is the standard form of the equation of an ellipse (3.3.4) (problem B7).

Projectiles. The positions of projectiles are often represented parametrically. The
vertical and horizontal components of the motion of ball or artillery shell can be
treated independently. If air resistance is neglected, we can obtain simple answers.
(Air resistance is an important factor, so neglecting it makes the answers wrong.
Nevertheless, it is a good "first approximation" and the real effect of air resistance
is complicated and cannot be derived mathematically until after calculus.)

Example 4: Assume that, due to the force of gravity, the vertical coordinate of a
projectile is given by

y=y()=-16£+ 100z + 5.

This is the usual formula (from Example 3.2.8) with distance measured in feet, time
measured in seconds, initial upward speed 100 feet per second, and initial vertical
coordinate 5 feet above ground level at y = 0.

Ifthe initial speed in the x-direction is 800 feet per second, without air resistance
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the object would continue the same horizontal speed, so
x =x(t) = 800¢,

from "distance equals rate times time," assuming the initial horizontal coordinate is
Z€ro.

We can use a calculator to plot the graph parametrically, but the standard
window is not appropriate. Figure 10 shows the trajectory (path) in a suitable
window.

When and where does the projectile hit the ground? Describe the path in
functional form.

The projectile hits the ground when y = 0. So solve -16¢2 + 100¢ + 5 = 0 for ¢.
Then plug that solution into "x = 800¢" to find the corresponding x value (problem
A3).

To describe the path in functional form, eliminate ¢. From the equation for x, ¢
= x/800. Then ¢ can be replaced by x/800 in the equation for y to give y in terms of
X.

100 - ‘ 100}
I | ! | l | ! 1
4 1000 2000 3000 4000 1000 2000 3000 4000
Figure 10: The path of a projectile. Figure 11: The path of a projectile.
x=800t. y=-16>+ 100z + 5. x = 800z - 40¢% y = -16¢% + 100t + 5.
[0, 5000] by [0, 200]. [0, 5000] by [0, 200].

Example 5: Suppose a projectile moves with the vertical motion described in
Example 4,
y=-16t*+100z+ S,

but the horizontal speed slows down as time passes so x(f) is less than 800¢. For
example, let x = 8007 - 407, 0 < ¢ < 10.

Plot the trajectory (problem A4).

Plot it parametrically (Figure 11). In this example it not so easy to eliminate ¢.
But there is no real need to find or use a functional equation that gives y in terms of
x. One of the advantages of parametric equations is that some curves are far easier
to describe in parametric equations.

Parametric Equations of Lines. The point-slope formula for lines follows from
similar triangles as discussed in Section 3.1 (Figure 3.1.3). Parametric equations for
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lines follow similarly. Figure 12 illustrates two similar triangles.

Parametric equations for lines give x and y in terms of a particular point on the
line (labeled "(x,, ,)" and "B") and two
direction numbers (labeled "a" and "b")
which are the change in x-value and
change in y-value to any other particular x9
point (labeled "A4") on the line.

Let P = (x, y) represent a general
point on the line, and form the similar
triangles in the picture. Now DB is some 1 1)
multiple of a. Call that multiple ¢, so DB %
=at, where "¢" is the parameter (¢ looks to . .. )
be about 1.3 in Figure 12). Then, by Figure 12: Similar triangles.
proportionality of sides of similar
triangles, PD is bt. Therefore the coordinates of P satisfy x = x,+DB = x,+at and
y=y+PD =y,+bt.

Therefore,

a C D

(843)x=x,+at and y=y,+ bt

are parametric equations of the line through the point (x,, y,), with direction numbers
a and b and with parameter .

When ¢= 0, the point is B. When ¢ = 1, the point is 4. If a = 0, x does not change
and the line is vertical. If 5 = 0, y does not change and the line is horizontal. The
slope of the line is b/a, if a # 0.

Example 6: Find parametric equations of a line
through (1, 5) and (3, 2).

Sketch a figure (Figure 13). x changes 2 units
when y changes -3 units, so let the direction
numbers g and b be 2 and -3. Parametric equations
(not the only ones) are:

x=1+2tandy=5-3t.

Example 6, continued. Suppose an object
undergoing uniform linear motion is at (1, 5) at
time 0 and at (3, 2) at time 5. Find parametric
equations of its path.

The points are the same as before, but we need
to change the time scale. The equations from
Example 6 yield (1, 5) when ¢ = 0 as we want, but
they yield (3, 2) at time ¢ = 1, not at time ¢ = 5. So, simply change the scale by a
factor of 5.

Figure 13:
x=1+2tandy=5-3t.
[-10, 10] by [-10, 10].
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x=1+2(t/5) and y =35 - 3(t/5).
Regrouping, the equations are
x=1+(2/5)t and y=5- (3/5)t

By similar triangles as in Figure 12, we see that if a and b are direction numbers
of aline, so are ka and kb for any & # 0. Here the direction numbers of the same line
are 1/5 the direction numbers used in Example 6.

Formula 8.4.3 describes uniform motion along a line. If we want to describe
non-uniform motion, simply replace "¢" by some function of ¢ (problem B3).

Inverses. Inverses of relations given parametrically
are particularly easy to state -- simply interchange

the expressions for x and y. 17

O"l

Example 7: The equations x =¢°-5tand y = 6 -
cos( - 4) yield the relation graphed in Figure 14 —H—-H~Hr—+—;—f—

(solid line). Therefore the inverse relation is given . é

by

x=6cos(t-4) and y=1¢3-5¢
(Figure 14, dashed line). Of course, as we saw in I ;
Section 2.3 on inverses, the points of the inverse T :
relation are the mirror image through the diagonal
line y = x of the points of the relation.

Figure 14: x=1¢*- 5t and
y =6 cos(t - 4) [solid],
and its inverse [dashed]

ional fc I
Functional form can always be converted to [-10, 10] by [-10, 10].

parametric form.

(8.4.4) The points given in functional form by
y = f{x) for x in some domain
are the same points given in parametric form by
x=tand y = f{¢) for ¢ in the same domain.

Using this idea, we can express and graph the
inverse of any function given in functional form,
even if its inverse cannot be expressed
functionally.

Example 8: Let y =x?- 5x + 3 (Figure 15, solid
line). Because some values of y (for example, y = ) \
2) correspond to more than one value of x, the Figurel15: y=x"-5x+3

inverse is not a function and cannot be expressed  and its inverse [dashed].
[-10, 10] by [-10, 10].
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functionally. Nevertheless, we can plot the inverse on a calculator by thinking of the
function parametrically as x =t and y = ¢* - 5¢ + 3. Then its inverse can be plotted as
x=1t*-5t+3 and y =t (Figure 15, dashed line).

Conclusion: Parametric equations have some advantages over equations in
functional form. They can express non-functional relationships and they can relate
positions to time. Also, some relationships that could be expressed functionally are
easier to express parametrically.

Terms: parametric equations, direction numbers.

Exercises for Section 8.4, "Parametric Equations":

Al. Do Calculator Exercise 1. That is, use your calculator to plot the parametric equations in
Example 1 (Figure 4), "Example 1, continued further" (Figure 5), and "More about Example 1"
(Figure 6). The final graphs are the same. Comment on the differences in how the plots develop as
your calculator plots them. [Ifyour calculator plots the graphs too rapidly to see the difference in time
of development, see problem B26 for a way to slow it down.]

A2. a) InFigure 7, what is the minimum possible y value of point P? b) At what value of O does
itoccur? c¢) What is the maximum y value? d) At what value of 0 does it occur?

A3. In Example 4, when and where does the projectile hit the ground? Describe the path in
functional form.

A4. In Example 5, where does the projectile hit the ground?

A Identify the type (no details) of shape described by the parametric equations:

AS5. x=2cost and y=2sint. A6. x=20cost and y=20sin¢
A7. x=6cos(3t) and y = 6 sin(35). A8. x=7cos(e') and y= 7 sin(e").
A9. x=5-2t and y=4+9t. Al0. x=4+¢ and y= 12+ 5¢.
All. x=¢ andy=3A. Al2. x=¢' and y=5-e'.

Al3. x=¢t and y=~£. Al4. x=3¢t and y=#£-4.

Al5. x=¢ and y=4¢. Al6. x=F+¢t and y=¢-6.

Al7. x=2cost and y=3sin¢, Al8. x=7cost and y=4sint.

Al9. x=cost and y=3 cost. [Be careful.]
A20. x=2sint and y=5sint. [Be careful.]
A21. x=5sint and y=15cost. A22. x=4sint and y=6cost.

A23. Watch the two graphs develop on a graphics calculator to answer this question: What is the
difference between the development of the graph of "x =5 sin¢ and y = 5 cos " and the graph of "x
=5 cos tand y = 5 sin " (from Example 1)?

A24. Watch the two graphs develop on a graphics calculator to answer this question: What is the
difference between the development of the graph of "x=sin t and y = sin " and the graph of "x =
cost and y=cost."
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A25. Watch the two graphs develop on a graphics calculator to answer this question: What is the
difference between the development of the graph "x =1+ 2tand y = 5 - 3¢" for all ¢ (from Example
6) and the graph of "x =3 - 2¢ and y =2 + 3¢" for all  [where the other point is treated as (x,, y,) and
the negatives of the direction numbers are used]?

A26. Watch the two graphs develop on a graphics calculator to answer this question: What is the
difference between the graph of "x =5 cos t and y = 2 sin " (from Example 3) and the graph of "x =
5cos(t-m) and y=2 sin(z - m)".

A Find parametric equations of

A27. A line through (-1, 6) and (2, 4).

A28. A line through (5, 10) and (1, 2).

A29 A circle with radius 6 centered at the origin.

A30. A circle with radius 2 centered at the origin.

A31. Anellipse centered at the origin witha =2 and b= 8.
A32. An ellipse centered at the origin withg = 10and b = 3.

A Give the slope of the line.

A33. x=5+3¢t and y=-7-2¢ A34, x=-2+6t and y=4t1.
A35. x=12-3F2 and y=20+ £ A36. x=-1+2¢' and y=9+e'.
M Convert the parametric equations to functional form.

A37. x=4+3t and y=2-1 A38. x=5-6f andy=2+ 3¢
A39. x=7sint and y=7 cos ¢. A40. x=5cost and y=3sint.
AAAAAAAA

B1.* Give two advantages of parametric equations over equations for y in terms of x ("functional”
form).

B2.* a) Relate the "m" of "y = mx + b" to the "q" and "b" which are direction numbers in 8.4.3 of
the parametric equations of that line. b) Does a given line have a unique a and 4? Explain.

B3. Formula 8.4.2 is more general than Formula 8.4.1, because the motion in 8.4.2 need not be
uniform. Generalize Formula 8.4.3 the same way, that is, generalize the formula for parametric
equations of a line to the case of non-uniform motion.

B4. Prove that equations 8.4.2 yield a circle.

BS5. Equations 8.4.2 are introduced with the phrase "For any function f'such that [0, 27) is a subset
of its range." a) Why is the range of frelevant? b) Give a (very) simple example of an fand its
domain such that the equations 8.4.2 do not yield a complete circle.

B6. Give parametric equations of a circle centered at (h, k) with radius .

B7. Inspect Example 3 and then give parametric equations for general ellipses centered at the origin
with horizontal and vertical semi-axes of lengths a and b (corresponding to Formula 3.3.4).
[Continued in B8.]

B8. [After B7]. Give parametric equations for general ellipses centered at (k, k) with horizontal and
vertical semi-axes of lengths g and b (corresponding to Formula 3.2.11).



Parametric Equations. Section 8.4. 495

MM Find parametric equations of a circle centered at the origin with radius 5 such that
B9. =0 corresponds to the leftmost point on the circle.
B10. ¢= 0 corresponds to the topmost point on the circle and 1 revolution occurs when = 1.

A Find parametric equations of uniform motion along a line such that
B11. t= 0 corresponds to the origin and ¢ = 10 corresponds to (1, 5).
B12. ¢= 0 corresponds to (0, 3) and ¢ = 2 corresponds to (2, 1).

AMAA Convert the parametric equations to functional form and identify the type of shape of the graph.
B13. x=3sint and y="7sin¢ [consider the domain.]

B14. x=5sin(f) and y=10sin() [consider the domain.]

B15. x=50¢t and y=-9.82+ 40z.

B16. x=¢-5 and y=£+41.

Bl17. x=e'andy = 2e' {[consider the domain.]

B18. x=# and y=5/ [consider the domain.]

B19. Suppose a projectile moves with vertical component given by y = -162 + 200t + 50 and
horizontal coordinate given by x = 2500z - 300¢ . If ground level is y = 0, where does it hit the
ground? ‘

A4 Find the equations for graphing on a calculator the inverse relation of
B20. fix)=x%-4x-2. B21. fix)=cos x, all x.
B22. flx) =5 sinx, all x. B23. fix)=x*-5x.

B24. This section discussed parametric equations of lines in the two-dimensional plane. The idea of
lines in three-dimensional space is precisely similar. We need three direction numbers (instead of two)
and a point that the line goes through. The equations are

x=x+at,y=y +bt,andz=z +ct.
Find parametric equations of a line through (1, 2, 3) and (4, 6, 8).

B25. Give parametric equations for any graph that somewhat resembles Figure 1.

B26. Learn how to adjust the speed at which graphs develop on your graphics calculator. On some
models, in "parametric" mode, the window includes the domain of ¢ and a "Tstep" entry which can
be used to adjust how much ¢ is advanced between evaluations. If the advance is smaller, more ¢-
values are used and the graph develops more slowly. Here is the problem: Graph x = 8cos(#*) and y
= 8sin(F) for O < ¢ < 2m. a) What is the shape graphed? b) How many times around is the shape
traced? c¢) On many calculators, the resulting shape is a bit (or a lot) fuzzy. Why? d) What does
this have to do with the amount ¢ is advanced between calculations?

B27. Find parametric equations of the path of a moon revolving around a planet which is revolving
about a sun. To make the graph fit on your calculator screen, assume the distance from the planet to
the sun is 8 times the distance from the planet to the moon, and assume the moon goes around the
planet 12 times during one revolution of the planet around the sun.
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