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Attention has been focused on parallels between teaching mathematics
and teaching second languages by Borosi and Agor (1990). The parallels
can indeed be very close.

Mathematical results are expressed in a foreign language. That lan-
guage, like other languages, has its own grammar, syntax, vocabulary,
word order, synonyms, negations, conventions, abbreviations, sentence
structure, and paragraph structure (Esty, 1991). I call the language
Mathematics (spelled with a capital letter, like other languages). Math-
ematics has certain features unparalleled in other languages, such as
representation (for example, theorems expressed with “x" also apply to
“b”and to “2x - 5™).

The language of mathematics is both a means of communication and an
instrument of thought (Kaput, 1988, p.167). The purpose of this article is
todescribe essential language concepts which have been underemphasized
in the usual mathematics curriculum and to discuss some of the basic
patterns of mathematical expression and thought. The ideas are of
particular relevance to the grades 9 through 12 curriculum standards of the
National Council of Teachers of Mathematics (1989): Standard 2, “Math-
ematics as Communication,” Standard 3, “Mathematics as Reasoning,”
and Standard 14, “Mathematical Structure.” The ideas are applicable to
college instruction as well because concepts are better learned late than
never. This article demonstrates the importance of language concepts in
the interpretation of mathematical results and suggests ways to improve
the reading comprehension, writing ability, and reasoning skills of school
and college students by integrating language topics into the curriculum.
These topics can be effectively taught to a wide variety of students,
including “math anxious™ students as well as strong students (Esty &
Teppo, in press).
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Language shapes thought. We are likely to think the kinds of thoughts
that our language makes convenient to express. The language of math-
ematics not only facilitates expression of mathematical thoughts, includ-
ing “those modes of thought that are essentially algebraic™ (Love, 1986,
p-49), it incorporates essential mathematical concepts. Furthermore, it
need be learned only once and is then good forever after. Fluency in it
provides access to the whole world of mathematics.

Mathematics as a Language

We can be completely serious when we assert that Mathematics is a
foreign language. For example, letters are used as variables in sentences
in several different ways which are unique to Mathematics (Usiskin,
1988). These usages can be successfully taught (Kieran, 1989, p.42).
Another language aspect is that many expressions require conventional
interpretations. For example, “3 + 2x*" is interpreted according to the
algebraic conventions and not simply left-to-right. Among its many
foreign features is one which is relatively simple -- it has repetitive
patterns of expression which can be described by a very limited number
of elementary results from logic. These results can be extracted, con-
densed, and successfully taught (Esty & Teppo, in press).

No one doubts that logic pervades the development of mathematics, but
its importance for the expression and concepts of mathematics has been
underestimated. Reading comprehension and writing skills require the
obvious reasoning component of logic, but there is far more to logic than
justreasoning. For example, the various kinds of mathematical sentences
(open sentences, generalizations, existence sentences) are distinguished
in logic and the different types of uses of letters as variables are studied
inlogic. Inlogic, the unifying logical concept of generalization allows the
essential similarities of many examples to be regarded apart as one new
thing at a more abstract conceptual level. This mental process is funda-
mental to many basic mathematical conceptions such as function and set.
I'will argue that these aspects of the language of mathematics are essential
to the understanding of algebra, sets, geometry, and all other areas of
secondary-school mathematics, as well as the higher-level subject areas
such as calculus. Kieran (1989, p.39) notes, “this particular aspect of
algebra appears to be one that never really does get sorted out by most
students throughout their entire high school algebra career.” These
observations can be combined to suggest a supplemental approach to
mathematics education. It is to integrate study of the language itself into
the curriculum.

Many students do seem to learn enough of the language of mathematics
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to succeed at algebra. But many get good grades and still cannot get
through the first few weeks of calculus. An alarming 54% of first year
college calculus students do not complete the first year with a grade of D
or better (Anderson & Loftsgarden, 1987), and these students are not the
ones who did poorly at high-school algebra. Every year about half the
students in secondary-school mathematics get the message they are “not
good at math™ and do not continue with the next mathematics course
(Committee on the Mathematical Sciences, 1990, p.59). We should not
deduce that all those students are “just not good enough.” Isubmit that our
current approach has failed to provide them the language skills they need.
The fact that the majority of students do not master the basic mathematical
language concepts tells us that we, as educators, should rethink how we
teach these concepts. It isatelling point that few of the language concepts
in this article receive significant attention in any school textbook series.

Language Concepts in Algebraic Sentences
It is useful to categorize language concepts in two ways -- according to
whether their primary application is to individual mathematical sentences
(equations, identities, theorems) or to paragraphs (that is, equation-
solving and proofs). I begin with a discussion of language topics which
apply to sentences. Here is the way a mathematician might write an
important theorem on the chalkboard.

Example 1: Zero Product Rule: bc = 0 if and onlyifb=0orc =0,

This theorem gives the primary justification for factoring. It tellsus one
way to solve equations. For example, it tells us that (x - 3)(x + 5) = 0 if
andonlyifx-3=0orx +5=0. Then, employing Uniqueness of Addition,
“b=cifandonly if b+ d = ¢ + d,” we see that the equation is true if and
onlyifx=3orx=-5

The Zero Product Rule is a statement which uses three sophisticated
language concepts: representation (letters represent expressions which
may use other letters, that is, letters serve as placeholders), generalization,
and logical connectives.

Mathematicians know that, in Example 1, “b™ and “c™ are variables
which may represent any real numbers; the use of the particular letters “b”
and “c” is not essential. Mathematicians know that there is an implicit
“For all real numbers b and c” at the beginning of that theorem, which
would be explicit in a text but which is commonly omitted on chalkboards.
And mathematicians know that “if and only if” means that the second
sentence, “b = 0 or ¢ = 0,” is “equivalent™ to and may (and often should)
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replace the first, “bc = 0.” The language lessons of these observations are
discussed next.

Representation and Generalization. While studying generalizations
students should learn that theorems which apply to all values (from a
specified set) apply to any values (from that set), even if their names are
unusual. Thus “be =0if and only if b = 0 or ¢ = 0 applies to the equation
in Example 1, “(x - 3)(x + 5) = 0,” because “x - 3" and “x + 57 represent
real numbers, and “b” can be any real number. '

How would these lessons be taught in a language class? When
theorems apply to equations, before assigning problems which merely
seek the answer, we could use a few problems to ask students explicitly,
“What is the “b" of the theorem?” Also, students would be required to
rewrite that theorem and others like it using different letters (different
variables). “xy =0if andonly if x =0ory = 0.” “f(x)g(x) =0 if and only
if f(x) = 0 or g(x) = 0.” Quantified variables can be replaced throughout
a sentence with other letters. Homework and exam problems should
empbhasize such letter-switching for its own sake as a language skill. If all
our problems appear to emphasize finding solutions the students quickly
learn that only solutions are important -- the valuable language lessons are
lost.

In a language course students would be required to translate into
Mathematics simple sentences such as “adding a number to both sides of
an inequality yields an equivalent inequality in the same direction.” “b <
cif and only if b+d < ¢ +d.” Almost every freshman taking college
mathematics understands this idea, but I have found that a substantial
majority cannot state it properly using variables (that is, in Mathematics)
until they undergo additional training which emphasizes how algebra
expresses its ideas (as opposed to what the content of the idea is). We
expect students to read theorems in Mathematics, but we rarely ask them
to write them. Ihave the distinct impression that instructors are afraid to
ask students to state theorems -- because they know that the responses
would, on the average, be terrible. This is tantamount to an admission that
we have not taught students to express themselves in Mathematics. Is it
any surprise that they cannot read it with full comprehension? Homework
problems which require students to practice stating methods and results
“in algebra” can help them master the difficult concept of representation
and would be appropriate if spread throughout any mathematics course.

Representation, Functions, and Word Order. The mathematical method
of describing functions requires the concept of representation. Weeks

after functional notation has been introduced, if an instructor defines a
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function f by f(x) = x? (for all x) and then asks students “What is f(3)?”
most students will correctly reply, “9” (Herscovics, 1989, p.75). But the
questions “What is “f(y)?” and “What is f(x + h)?" elicit very poor
responses -- the fundamental lessons of representation in generalizations
have not been learned. Even the idea that “f” (as opposed to “f(x)") is
defined by “f(x) = x?” is usually unclear. This is well-known to be a
difficult concept (Markovits, Eylon, and Bruckheimer, 1988) and many
first year algebra texts avoid it (and thus the key idea of representation and
placeholders) in favor of the less conceptual “y = x2" notation.

Class days devoted to the subject of word order would be well-spent.
When the time comes for students to evaluate f(x + h) they would be more
capable of recognizing that “x + h”, which represents a number, comes
firstand thenfisapplied. Students oftenapply fto“x”andnotto“x + h,”
which demonstrates that they do not fully grasp that the definition of f in
terms of variable “x” is a generalization in which the name of the variable
isirrelevant. Note that our standard functional notation, “f(x)", may cause
problems because it is not evaluated left-to-right like English. “x" is first,
then “f” is applied.

Conventions about order are fundamental to interpretation of math-
ematical expressions, but many students do not know even the standard
algebraic conventions. Of course, they should know them. They have
been told them. They read sentences employing them in almost every
mathematics lesson. Nevertheless, too many students do not know them.
How can the language approach help students learn the importance of
order?

Language texts discuss syntax, that is, the proper arrangement of the
components of sentences. A language course would explain the conven-
tions about the use of parentheses and ask the students to identify the order
in which the operations are executed in numerous expressions. For
example, “x + 5x” is not equivalent to “(x + 5)x™ and the order in which
the expression “2 + 3x?” is evaluated is certainly not left-to-right. Stu-
dents would evaluate expressions like these where the point istorecognize
the importance of order, not to solve an equation. If we want to make a
point, our homework must occasionally emphasize the point, not merely
utilize it. Then the questions would appear on an exam, “What are the
algebraic conventions about order?” and, “For each convention give an
example of an expression in which the order of operations is not left-to-
right.”

Study of the conventional rules in algebra is good preparation for the
study of functions, since functions are also rules. When students grasp the
rules of order for evaluating expressions such as “2 + 3x*” in which 3
multiplies x* (not “x™) and then 2 is added to the result (not to “x™), they
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are a step closer to understanding the expressions “f(x*)” and “f(x + h)"
which also have particular orders.

There is another happy consequence of emphasizing order. If students
recognize the order in which an expression must be evaluated they can
easily learn to solve equations in which the key idea is to do the inverse
operations in the reverse order (also known as “doing and undoing™). This
is an algebraic procedure in which “you must think precisely the opposite
of the way you would solve it using arithmetic” (Usiskin, 1988, p.13).
This concept can be mastered by very young students even before they
take algebra.

Example 2: When the problem is, “Solve 3(x + 5) = 21, the particular
value “21" is not the key to the solution process. The order of operations
in the expression “3(x + 5)" is. The original order, beginning with x, is to
add 5 and then multiply by 3. To solve it, do the inverse operations in the
reverse order. First divide by 3 and then subtract 5.

Students need to learn about word order, not only for this “inverse-
reverse” equation-solving method, but also to understand identities and
other equation-solving methods. For example, The Zero Product Rule
(Example 1) is often employed after factoring, and the purpose of
factoring is to change the order of the operations in the expression so that
multiplication is expressed last.

Order is also a key to understanding simplification, whlch many
students find to be an unmotivated process (Davis, 1989, p.117). The
purpose of simplification of an algebraic expression is not to change the
numbers, but to change the sequence of operations used to express the
numbers (to a preferable sequence). Preferred sequences canbe expressed
as algebraic patterns such as the Zero Product pattern (ab = 0) or the
“inverse-reverse” pattemn (f(x) = c) in which we want f(x) expressed with
only one appearance of the unknown “x” (Example 2). Order of opera-
tions is a necessary preliminary concept for simplification and emphasis
on which orders are preferable can be used to motivate simplification.

Generalizations and Open Sentences. Students must learn to recognize
generalizations and distinguish them from open sentences. The main
problem is that generalizations are often abbreviated, in which case they
have the same appearance as open sentences, although their interpreta-
tion is much different. In the English sentence, “He set the chess set
- down,” the word “set™ is used with two distinct meanings, yet, in context,
there is nodifficulty distinguishing which meaning is which. But consider
the difficulties confronting an algebra student. Here are three sentences
in Mathematics which have apparent similarities but different interpreta-
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tions:

(x+1)?=35

(x+ 12 =x2+2x+1;

Let f(x) = (x + 1)

Anyone fluent in Mathematics understands that “(x + 1)? = 5" is an
equation which is true for some values of x and false for others. It is a
sentence about x. The knowledgeable reader expects it to be an equation
to be solved.

Thesecond sentence, “(x + 1) = x2 + 2x + 1,"isan identity, true for all
values of x. Itisnot about x. An implicit “for all x” has been suppressed,
as is quite common. One side of the equation may be used to replace the
other inany sentence. Therefore it can play arole in the process of solving
an equation. The informed reader may use this equation, but does not
expect to solve it.

The third sentence, “Let f(x) = (x + 1)*" is also true, for a different
reason. It is a definition of the function f, and is therefore true “by
definition.” Moreover, the sentence will probably remain true only until
the next problem when there will be a new, different, f.

In algebra the ability to determine meaning by appearance requires a
certain amount of fluency in Mathematics. These three cases are distin-
guished and studied in the subject of logic.

There are only three basic types of mathematical sentences with
variables: open sentences (such as equations to be solved), generaliza-
tions (such as most theorems), and existence statements (such as most
counterexamples, and some defining conditions, such as in the formal
defining condition of “even™ number: A number, n, is even if there exists
an integer k such that n = 2k).

Thedistinction between open sentences and generalizations is reflected
in the critical difference between equations and identities. Equations
employing “x"may be about “x™, but identities employing “x” are not. For
example, “3(x + 4) = 20 is about “x”, but “3(x + 4) = 3x + 12" is not
about x. It is about the order relationship of addition and multiplication.
Many times I have asked calculus and precalculus students, “What is this
sentence about?™ Most do not even understand the question. Very few
know -- yet we expect students to read their texts when they do not even
know what many of the sentences are about.

We can use language techniques to teach students to distinguish
between these types of sentences and to recognize the importance of
context. In English there are many definitions of the word “set™ and
readers use context to tell which is which. This feature of Mathematics is
no different from English usage; it is the reader’s responsibility to learn
how to interpret sentences with similar appearance but different mean-
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ings. Now many students cannot interpret mathematical sentences, even

. in context, partially because they have not been taught to recognize the
three basic categories. The current approach of devoting a paragraph in
an algebra text to the fundamental subjects of open sentences and
generalizations is insufficient and clearly not effective.

What is effective is to reorient a substantial fraction of homework and
exam problems toward the goal of understanding, as opposed to just
doing. Teachers know that students rapidly adjust their orientation toward
any material to correspond to the requirements they perceive -- as defined
by homework and exams. Every difficult language concept mentioned in
this article can be and has been effectively taught to a variety of “math
anxious” students by asking the students homework and exam questions
which emphasize the concept (as opposed to numerical answers). Esty and
Teppo (in press) present numerous examples in addition to those found
throughout this article.

The essential difference between “free” and “bound™ (“dummy™)
variables is likewise neglected. Variables quantified with “For all...” or
“There exists...” are called “bound™ or “dummy” variables. Dummy
variables are placeholders which can be switched for other letters through-
out a mathematical sentence without affecting the meaning (as long as
certain conventional usages of notation are not violated). “For all x,
3(x +4) = 3x + 12" expresses the same meaning as “For all y, 3(y + 4)
= 3y + 12, since both variables are quantified. Both sentences apply to
all real numbers. In English, the term “synonyms™ refers to words with
the same meaning; these are “sentence-synonyms™ of Mathematics in
which sentences have the same meaning. Other types of “sentence-
synonyms” are discussed below.

On the other hand, the choice of letter is important in an open sentence.
For example, “6x = 48" does not express the same meaning as “6y = 48,
any more than “John is blond™ expresses the same meaning as “Sam is
blond.” “x™ is not quantified (it is “free™) and cannot be switched.

Students study the content of sentences with variables daily in every
mathematics course after beginning algebra. Surely they should study the
forms and interpretations of these basic three types of sentences because
they are essential to the language in which they will be working (Usiskin,
1988).

Here is a type of question not seen in high-school texts.

Exercise: Suppose each of the following sentences is true. Which express
mathematical facts and which express facts which depend upon the
particular things represented by the letters? a) 3(x +5) = 12; b) 3(x + 5)
=3x+15;¢c) x(x + 1) =x* + 1; d) SHT,; e) SCSUT.

seT
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Students need to be able to recognize that (b) and () are alwaystrue and
therefore mathematical facts and that (a), (c), and (d) are not always true,
and, therefore, if they are facts, they must be particular facts about
whatever the letters represent. Note that the appearance of equation (c) is
very close to that of an identity. An experienced reader may pause and
wonder if “x* + 1” is a misprint for “x + x.” This proves the point that
readers have expectations about what they read. But many algebra
students do not know what to expect and have not even studied the relevant
categories of sentences. Without training (or a lot of experience), students
have difficulty detecting the difference between identities and other
equations -- a difference which this example shows is often not indicted
by the appearance of the sentence itself. Problems like these can be used
to help students recognize the difference.

An essential preliminary language concept is the distinction between
equations (sentences) and expressions (which play the role of words).
Identities exhibit equivalent expressions, which are occasionally distin-
guished from other equations by using the symbol “=" rather than “~".
This type of equivalence is quite different from the equivalence of
equations. The processes which apply to one do not necessarily apply to
the other. For example, dividing through by four in the equation “4x + 8
= 4x*" yields an equivalent equation, but dividing through by four in the
expression “4x + 8" does not yield an equivalent expression. A problem
which requests the complete factorization of the expression “(2xy)? -

4x’y” often inspires techniques which are only applicable to sentences.

Many students who know how to factor nevertheless obtain the wrong
answer by omitting the “4™ from the correct answer “4x%y(y - x),” and
many others also omit the “x?” or “y”, by canceling, a process which is not
legitimate for expressions.

Logical Connectives. The Zero Product Rule stated in Example 1 employs
the essential vocabulary “if and only if” and “or”. This rule appears early
in Algebra I, but the students are not prepared to grasp it. It could be
restated, “bc = Oisequivalenttob = 0orc =0,” in which case students must
then understand the term “equivalent™ in place of “if and only if.” Either
way, important terms need to be explained.

In a language course the use of important words would provoke a
discussion of their meanings. The same should be true in a mathematics
class. There are only five key logical connectives: “and”, “or”, “not”,
“if..., then™, and “if and only if". Proper understanding of the use of these
words in mathematical sentences is critical, and misconceptions from
imprecise English usages of these same terms must be addressed, or else
the purpose of clear communication will not be served, because the
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English and mathematical usages of these terms may differ. For example,
students may erroneously solve “|x|> 5 with*x < -5and x > 5," using “and”
in an additive sense properly given to “or” in Mathematics. The math-
ematical use of “or™ also needs some explaining, since it does not, by itself,
imply exclusivity as the context sometimes does in English, for example,
“I will moveto New York or Los Angeles.” “Or” and “and” can be virtual
synonyms in English - compare “Megan or John can help you,” with
“Megan and John can help you,” which could have the same interpretation
in English, whereas “or™ and “and” definitely have distinct interpretations
in Mathematics. The connective “not” is another word that is often
mathematically misplaced in the context of English generalizations, as for
example in, “All batteries are not alike.”

The remaining connectives; “if..., then...” and “if and only if™, are
absolutely fundamental to mathematics, but not well-understood. In
English we frequently use “if..., then...” with the meaning of the math-
ematical “if and only if.” For example, “I will let you have the car tonight
if you do your homework first,” in which there is an implicit implication
that if you do not do your homework first you will not get the car.
Unfortunately, textbook authors frequently use *if..., then...” when “if and
only if” would be preferable. A search of school and college textbooks
reveals many examples of unnecessarily weak statements such as, “If b <
0 and ¢ > d, then bc < bd.™ This is inferior to, “If b < 0, then ¢ > d iff be
< bd,” because the former does not assert equivalence when it could. A
valuable supplement to any text would be to note when theorems and
definitions stated with “if..., then...” could (and should) be stated with “if
and only if.”

Generalization, Negation, and Existence Statements. The logic of nega-
tions, another language topic which is important in algebra. To show that
a sentence is false, we note that its negation is true. Here is an example.

Example 3: Conjecture: “If be = bd, then ¢ = d.” True or false?

Studying conjectures can help students learn to read mathematics
critically and to distinguish truth from falsehood. This conjecture is an
abbreviated generalization which omits the initial “For all b, ¢, and d..."”.
Students who have studied generalizations know that this statement is an
implicit generalization and the question asks if the sentence is alwaystrue.
This understanding is triggered by the context in the same way that we
recognize that “(x + 1)* = x* + 2x + 1" is an identity.

Because mathematicians regard a statement as false if and only if its
negation is true; to show that this conjecture is false, we instead show that
its negation is true. The thought process involves two distinct logical
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concepts. The first is the negation of a conditional sentence of the form “If
H, then C.” The second is the negation of a generalization, which is an
existence statement -- the third basic type of mathematical sentence.

I have posed the conjecture “If bc=bd, then c=d” to many college
students from freshman-level through seniors in mathematics education.
A substantial majority (including the future teachers) do not regard it as
false. Most would benefit from a study of the language concept of
negation. If they were studying French, there would be a section on the
use of negation. “Je sais.” “Je ne sais pas.” (“Iknow.” “Idonot know.")

The negation of “If H, then C" is “H and (not C).” The negation of the
generalization “For all x, if H(x), then C(x)" is equivalent to “There exists
an x such that H(x) and (not C(x)),” that is, a “counterexample.” The
negation of a generalization is not a generalization. With a little training
in the role of variables, students can understand that the negation of “For
all b, ¢, and d, if bc = bd, then ¢ = d" is “There exist b, ¢, and d such that
be = bd and c#d.” Then the example of the negation,b = 0,c¢ = 1,andd =
2, serves as a counterexample to the conjecture, proving it false. When we
offer this conjecture as a true-false question and mark a student’s “true”
response wrong, we frequently get an argument that it is sometimes (even
“usually™) true, since most students regard statements which are either
true or false (but not both) as open sentence that are sometimes true and
sometimes false. We can dispel the erroneous “sometimes™ idea with the
study of generalizations.

Examples 1 through 3 exhibit profound language concepts that affect
the interpretation of sentences: representation, generalization, word or-
der, logical connectives, abbreviation, and negation. It is not enough for
courses to simply mention these special characteristics of Mathematics
and then immediately assign traditional homework problems. These are
fundamental characteristics of Mathematics which deserve class time,
textbook emphasis, and homework of their own. The payoff is immense
when students who truly understand the language are able to read, write,
and think Mathematics correctly in years of subsequent courses.

Language Concepts in Equation-Solving

The process of solving an equation creates a mathematical paragraph.
Two basic patterns from logic determine the organization of such para-
graphs. Nevertheless, few students are exposed to the logic of solving
equations. '

Many students learn to manipulate an original equation to get new
equations without understanding whether their steps preserve, add, or
drop solutions. Consequently, many students are quite unsure of what
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they have learned about solving equations. There are only a limited
number of theorems that need be applied to solve the usual sorts of
algebraic equations (Esty, 1991, Chapter 4), and they are easy to express
and easy for students to apply unerringly, but they must first understand
generalizations and logical connectives. Examples 4 and 5 illustrate the
two basic logical patterns of equation-solving.

Example 4: Solve (x + 5)(x - 2) = 2x(x - 2).

The imperative “solve” means “Find the values of x such that the
sentence is true.” The mathematically correct idea that such an equation
can be regarded as an open sentence which is sometimes true and
sometimes false startles many of my students. They think equations are
true. They have not learned to distinguish between sentences which are
mathematically true and open sentences like this one which are merely
sentences expressed in mathematical notation. Thus the idea of “equiva-
lence” cannot have full meaning for them. '

Ideally the solution process consists of a sequence of equivalent
equations, the last of which exhibits the solution(s). “If and only if™ is the
connective which connects equivalent sentences, that is, sentences which
are true for the same values of the variable (This is a second type of
“sentence-synonym” in Mathematics).

How many times do we see simple equations solved with the “=" sign
misused as a connective? For example, The equation “5x = 60™ may be
solved with the written string, “5x =60 = x = 12,” in which the student did
the right thing and wrote the wrong thing (Behr, Erlwanger, & Nichols,
1980). This misuse of “=" to mean, “I am about to do the next step,” used
to irritate me, but now I understand it better. At least, the student knew
that the sentences “5x = 60 and “x = 12" are connected. If he or she uses
“="to connect them, it is only because we have not taught him or her how
to properly express the connection. Study of the proper concept (equiva-
lence of sentences) and a convenient symbol for it (“iff” or “=") is
necessary to help solve that problem.

Continuing with Example 4, here is the “Theorem on Canceling™:
“be =bdifandonly if c =d or b = 0.” It tells us that

(x+5)(x-2)=2x(x-2) iff x+5=2x or x-2=0.
iff x=50rx =2 [by Uniqueness of Addition, twice].
The last pair of equations exhibits the solution.

Too many students will “cancel” the factor of x - 2 and accidentally
drop a solution. There is no need for this to happen if the text states the
Theorem on Canceling explicitly and the student’s background includes
enough familiarity with the language to permit full understanding of it.
Correct solution processes often rely on understanding which forms are
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equivalent and which are not (Booth, 1989, p-57f). Clearly the concept of
“equivalent™ equations and sentences is fundamental to equation-solving,
yet too many students manipulate equations without knowing what they
are doing and why. ‘

The next example makes clear the distinction between the connectives
“if..., then...” and “if and only if.”

Example 5: Solve -(x-1)=/x+11.

The approach is to square both sides to obtain the equation x?- 2x + 1
=x + 11. Next comes the equation, x? -3x - 10 = 0, then (x - 5)(x + 2) =
0, and then, using the Zero Product Rule,x-5=0o0rx +2=0. Then x
=5 or x = -2. Many students stop here.

Many students learn to check their solutions. Checking back (Why is
this necessary? Didn’t we do the steps right?) we find that x = -2 satisfies
the original equation, but x = 5 does not. What happened? Why did it
happen? This is a mystery which remains unsolved for too many students.
They ask, “What did I do wrong?”

The answer is simple: The student did nothing wrong. The first step
entailed squaring, which is an “if..., then...” process, not a process which
guarantees equivalence. (The Rule on Squaring reads: If f(x) = g(x), then
[(f(x)]* = [g(x)]2) What happened is concealed when algebra is taught
without studying logical connectives and generalizations. Not all equa-
tion-solving steps yield the ideal case -- equivalence.

The Theorem About Extraneous Solutions tells us that, when an “if...,
then...” rule applies, the solutions to the first equation are precisely the
solutions to the second equation which also satisfy the first. Thus the
solutions to the final equation in a sequence might have to be pruned down
by checking them back in the original equation. School and college texts
donot state such a theorem, nor do they relate the connective “if..., then...”
to the phenomenon. Unfortunately, if the students have not studied
“equivalent™ equations and the role of the logical connectives, the check-
ing back in the original equation that this theorem requires is easily
confused with checking for mistakes, a process with which they are far
more familiar. In some texts (for example, Ruud & Schell, 1990, Section
1.4) these distinct reasons for checking are juxtaposed without drawing a
clear distinction between them. Thus, students who find an extraneous
solution are naturally left with the feeling that they have done something
wrong, but they do not know what. This is hardly the impression of
mathematics that we wish them to acquire.

This feature of “if..., then...” also explains why a word problem may
yield an equation which has a solution which does not actually solve the
word problem. The point is, if the situation in the word problem holds,
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then the equation follows. This is not the same as equivalence, and there
is no implication that all the solutions to the equation are relevant to the
word problem. I know of no algebra text which makes this connection to
basic logic.

Without proper emphasis on the connectives, students lose track of
which types of steps are guaranteed to work and which are not. Our
conception that mathematics is orderly and exact is belied by our ex-
amples when we avoid giving students the whole picture.

‘We should be careful when we state our rules. Suppose we are teaching

students to solve simple equations and we state Uniqueness of Addition
like this: “If b=c,thenb + d = ¢ +d.” This looks good, is an axiom, and
is often seen in algebra texts, but it is emphatically not the formulation
which should be used to solve equations because it fails to assert
equivalence when it could (by using “iff”). Here we expect students to
infer equivalence when it is not explicitly stated, but the Rule on Squaring
is stated with the same connective and yet there we fault them for errors
which result from the same expectation. How are students supposed to
distinguish subtle but significant differences in meaning if textbooks and
instructors do not observe them? Precise thought requires precise lan-
guage, and this version of Uniqueness of Addition is, unfortunately, only
correct, not precise. ’
_ If we want our students tounderstand how to solve equations, we should
do it right and emphasize the meaning of “equivalent” in the context of
equations, give a convenient symbol for it (“iff” or * = "; the whole phrase.
“is equivalent to™ is too long to employ regularly), supply the background
in connectives they need, and then state our theorems so that equivalence
is easy to see when it is there.

Again, the remedy to the problem is to change the emphasis of some of
the homework. Sometime in every student’s equation-solving career he
or she needs some practice making connectives explicit and citing
algebraic theorems to justify steps. This is a major part of geometry, but
neglected in algebra. This is not the same as finding the solution, and not
even the same as showing the work. It is to prove that students know why
their work is appropriate and correct. After all, correct steps are justifi-
able. Citations help make connections between current homework
problems and the theorems which express the essential similarities of
many related examples. That is, citations encourage students to learn the
language in which problem-solving patterns are efficiently expressed.
Furthermore, they require students to reference and learn the corpus of
known mathematics, which helps them avoid inventing their own conve-
nient, but possibly incorrect, steps. Also, citations are good preparation
for proofs, in which steps must be justified by reference to known results.
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There are a limited number of common patterns in the application of
logic to mathematics. We have just seen two in equation-solving.
Understanding these patterns helps students better understand how to
solve equations. Because equation-solving is a logical process, students
should see homework problems in which equation-solving is treated not
only as a skill, but also as simple logical process. To emphasize this I
assign problems in which the instructions are to “exhibit every step,
exhibit the connective, and cite a rule (theorem).”

Iam convinced that the fruit of our neglect of logic is a pervasive feeling
among students that equation-solving is mysterious. This is ironic,
because we mathematicians feel that we have clearly and concisely stated
the rules of algebraic manipulation. But tell that to students who have
accidentally found extraneous solutions when they employed squaring.
They don't think that mathematics is straightforward. The background
that mathematicians have which makes mathematics understandable and
mathematical equation-solving methods clear is denied to our students.
Why? Because we do not teach them the language and, most essentially,
the basic logic.

The Next Advance: Proof

Proofs are commonly regarded as more advanced than equation-
solving. Our students have enough difficulty solving equations, so
naturally we do not emphasize proofs in algebra. Should we mention
proofs only in geometry? Or can students profit from proofs in algebra as
well?

I agree that most students without any background in Mathematics are
unlikely to benefit from proofs, because proofs are paragraphs in the
language of mathematics, and students who cannot understand sentences
will not be able to understand paragraphs. Ialso agree that there is no need
to emphasize proofs the first time the students see algebra. But the usual
curriculum gives the students two years of algebra. Don't proofs belong
in there somewhere? How much more advanced are proofs than calcula-
tion-oriented problems? ‘

The distinction between the skills needed to create a proof and the skills
needed to solve equations is not so firm as is commonly supposed. Do
students realize that they doa proofevery time they properly employ steps
which solve an equation?

In proofs the sentences are logically connected to form a paragraph. In
equation-solving the sentences (equations) are logically connected (by “if
and only if,” as far as possible) to form a paragraph. The last sentence
exhibits the solution(s). Ineach process, steps are justified by prior results
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(axioms, theorems, and definitions). In fact, a correct sequence of steps
which solves an equation actually proves that the solution is correct. But
we imagine these two processes to be quite different. Why? In equation-
solving we have not taught them to see the logic they use. Rare is the text
which has any problems which ask students to cite reasons and exhibit
connectives when solving equations. But the fundamental idea of using
previously-obtained results to justify steps is prominent in both equation-
solving and traditional proofs.

The next example illustrates the additional knowledge and skills a
student must have in order to follow, and even do, proofs in algebra. One
step in many algebraic proofs is to restate the theorem with the logical
connectives rearranged according to one of the basic logical equivalences.
Then the proof proves the new, equivalent, theorem instead of the original
theorem. This is very confusing for students who do not know the basic
logical equivalences, especially since restatements rarely are mentioned
explicitly.

Example 6: Consider the usual multiplication of real numbers. Suppose
students already have axioms and results asserting that multiplication is
associative, products are unique, 1b = bforall b, b(0) = Oforall b, and that,
if b#0, then there exists a number, 1/b, such that (1/b)b = 1. At this stage
students can understand the proof of the Zero Product Rule if they know
the basic logical equivalences (and they cannot if they do not). Itis stated
with “iff”, so it can be regarded as having two halves by the logical
equivalence of “A iff B” and “[If A, then B] and [if B, then A.]” This is
one of the basic logical equivalences and students can easily learn that
theorems stated with “iff™ are often regarded as having two “if..., then...”
halves. (Logical equivalences are a third type of “sentence-synonym.™)
One half of the Zero Product Rule is: If bc =0, thenb=0o0rc = 0.
Proof: If b#0, then 1/bexists. Since be =0, (1/b)(bc) = (1/b)0 =0. Also, -
(1/b)(be) = ((1/b)b)c = 1c ='¢c. Thusc =0.

This proof does not begin with a hypothesis, and assumes something
(b#0) which is not a hypothesis. The logic is correct, but evident only to
those who are logically inclined. Certainly many students donot have the
background to fully understand this proof. However, if they knew a few
basic logical equivalences they could recognize that this proof addresses
areorganization of the original statement.! Here is the theorem justifying
that reorganization.

Theorem on “or” in the Conclusion: “If A, then (B or C)" is logically
equivalent to “If (not B) and A, then C.”
This is an abstract statement about a common pattern in which logical
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connectives are employed. Students can truly understand the proof only
if they recognize the alternative, equivalent, pattern. The proofs of most
of the rules for equation-solving employ logical equivalences to reorga-
nize the original statement into the form in which they are actually proved.
If every proof had a distinct pattern, then we might be justified in thinking
that mathematical reasoning in algebra is too much to teach our students.
But the number of basic patterns is only about a dozen and we should not
pass up the opportunity to help students learn to reason mathematically.

The proof can be seen to begin with “not B” (b#0 and use “A” (bc = 0)
to deduce “C” (c = 0). Students can learn that results with “or” in the
conclusion are usually reorganized using this logical equivalence. Oth-
erwise, the organization of the proof does not make sense. The reasonin g
can be grasped in English by those students with good reasoning skills,
but, by expressing it in Mathematics, it can be studied and learned even
by those who do not begin with good reasoning skills.

For practice, students who have seen this theorem can be asked to
employ it to deduce another fact from “If x? > 25, thenx > 5 orx < -5.” Or,
after noting that fact, they can be asked what can be deduced about x given
“x? > 25 and x¥5.” We do not need to limit our students to reasoning in
English when there is another language specifically designed to express
the basic patterns of reasoning.

We spend a great deal of time categorizing algebraic equations. For
example, students are trained to recognize “3x? + 17 = x> + 2x + 9" as a
quadratic which is usually handled by consolidating all the terms on the
left side. The quadratic pattern is important, but we spend more time on
teaching students to recognize obscure algebraic patterns such as factor-
able cubics and quartics than we do on the few essential patterns of logic
without which they are handicapped in mathematics understanding. To
comprehend proofs in algebra students need to know transitivity of “if...,
then...” (the most important tautology) and approximately a dozen of the
most commonly used logical equivalences.?

The basic logical equivalences are fundamental patterns of mathemati-
cal thought which are easy to teach. Students can do the proofs with truth
tables. Why not, in the process of studying the definitions and properties
of the logical connectives, emphasize precisely those compound state-
ments which appear regularly in mathematics, rather than assign home-
work problems consisting of arbitrary combinations of the connectives?
Why not exhibit a simple proof and show how these combinations can be
used to understand the proof? This approach may seem obvious, but it is
not the approach used in logic texts or “finite” or “discrete™ mathematics
texts.

Translation. The language skills required to fully appreciate algebraic
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proofs have been mentioned above. Remarkably, only one more language
skill, translation, is required to progress through the entire college (and
even graduate-school) mathematics curriculum. Translation is mentioned
here, not because the thrust of this article is high-level mathematics, but
to complete the discussion of all the basic mathematical language skills.
Translation skills can be taught whenever new terms are introduced.

Mathematics is a language and translation is frequently required. This
article will not discuss the type of translation between English and
Mathematics required to do word problems. That is an important, but
separate, issue (Herscovics, 1988, p.63). The translation discussed here
is within Mathematics. For example, one way to express a thought may
emphasize symbols and technical vocabulary, while another may empha-
size logical connectives. The ability to translate between these “dialects™
of Mathematics is an important language skill.

Mathematics is notorious for its difficult terminology. Students often
find that they don’t really understand the terms, and, if they do, the proofs
do not seem to use them the way they understand them. The reason is our
attempt to do all the work in English, as far as possible. For example,
students may attempt to understand a term such as set “intersection” by
paraphrasing the given mathematical definition in English and memoriz-
ing that it is the set of elements “in both.”

At some level it is good for the students to be able to translate into

English; but it is equally important for them to have a firm grasp of the few
essential mathematical connectives so that terms can be understood in
their natural language -- Mathematics. A setis determinedby its members,
so the definition of “SUT™ which determines its members, “x € SUT iff
x€Sand x€T,” is ultimately precise and the one utilized in mathematical
paragraphs. Only by avoiding study of a few key logical terms do we force
students to look to English to understand our vocabulary (Tall & Vinner,
1981).
Example 7: Suppose the students have just begun to study sets and they
have learned these three definitions: 1) two sets are equal if they have the
same elements, 2) S is a subset of T when all the elements of S are also in
T, and 3) The intersection of S and T, SN'T, is the set of elements in both.
Suppose we state a few simple results, including

Result 1: If SNT = S, then SCT.

Some students can see that this must be true because intersecting with
T does not remove any elements from S, so T must be at least as big as S.
This sort of argument is correct, and may be convincing, but it is not what
mathematicians call a proof. Furthermore, if we avoid proofs which use
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the full power of Mathematics at this elementary level, students will not
receive the necessary practice with simple proofs prior to confronting
complex results which truly require logic, translation, and reorganization.

Only a few weeks into freshman calculus students will be asked to
understand “The limit of f(x) as x approaches c is L™ which is equivalent
to “For £> O there exists 5>0 such thatif 0 < |x-c| <8, then |f(x)-L| < &.”
This sentence combines generalizations, an existence statement, and a
conditional sentence. Our students should study these concepts individu-
ally first; this complex combination is not a good place to start. Neverthe-
less, many students do begin their exposure to proofs in analysis (as
opposed to proofs in geometry) with this sentence. We should not be
surprised at the blank responses we get when “e-5" proofs are introduced.

“If SNT = S, then SCT™ can be proved as follows: If x€S, then
x€S N T, by the hypothesis and the definition of set equality. Then xeT
by the definition of intersection.

That is a fine proof, but students who learned only the given definitions
cannot be expected to read and comprehend it because the steps in the
proof do not have the same appearance as the information in the defini-
tions. They have learned the set-theory terms in an important language,
English, but not in Mathematics, the language which facilitates further
advancement in mathematics. If those three definitions had been learned
in Mathematics as well as English, the proof would be easy to grasp. It
would require only translation of the terms and symbols in the theorem
into the dialect of Mathematics which exhibits the use of the connectives,
and reorganization of the statement into a logically equivalent form.

When first studying the concept “subset,” a proof that, “Under hypoth-
esis H, SCT" requires that the sentence “SCT" be translated into “if x€ S,
then x€T.” Thus Result 1 has an implicit hypothesis in the conclusion.
The reorganization typical to proofs of results with hypotheses in the
conclusion is given by the basic logical equivalence:

Theorem on Hypotheses in the Conclusion: “If A, then (if B, then C)"
is logically equivalent to “If B and A, then C.

In the conclusion of Result 1, “B” is “x€S™ and “C” is “x €T. The
rearranged result is, therefore, “If x€Sand S N T =S, then x € T. The
proof addresses this version and begins with “If x€S™ as expected. It
employs the definitions of intersection and set equality as stated in
Mathematics (as opposed to English): x€ SNT iff x€S and x€T. S =R
iff {(if x€8, then x€R) and (if x€R, then x€S)}. Each step exhibits
logical connectives, even though most of them were implicit, not explicit,
in the original statement of the theorem.

Any version of a definition which avoids the logical formulation may
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be closer to English, but is further from Mathematics and further from the
form in which mathematicians employ the concept. Therefore, students
who learn that sets S and R are equal if their members are “the same™ are
likely to be uncomfortable with proofs in which the logic will derive from
the mathematical formulation. The mathematical formulation appears
tougher, but alittle logic makes it clear and the logical version has the huge
advantage that it displays the logical connectives the way they are likely
to be used in subsequent mathematics. We are making regrettable
sacrifices in future understanding every time we avoid Mathematics foran
easy English alternative.

It is important to note also that logic applies to sentences, not expres-
sions. Therefore our definitions should be regarded as definitions of
sentences containing terms, not just definitions of terms. A definition of
the expression “SNT" can be given in a version of Mathematics which
emphasizes symbols and notation (in set-builder notation, SNT = {x|x€S
and x€T})), but it often must be reformulated as a definition of the sentence
*» €3NT" for use in a proof. If the students learn definitions in the version
which exhibits the logical connectives (in addition to any English version
that they find illuminating) they will have the tools to comprehend the
steps in proofs. When we underline terms in definitions (supposedly
identifying what we are defining), such as in the three English definitions
in Example 7, we are misdirecting the students by emphasizing the term
instead of the whole sentence.

Students of mathematics should learn to define sentences, not words.
Sentences exhibit the contexts in which the terms are applicable. Even
more importantly, when a student needs to understand a term, he or she
will see it in a sentence. If the definition is expressed in a sentence-based
version, an entire sentence containing an unfamiliar term can be replaced
by an equivalent sentence which is expressed in more primitive terms.
This translation makes the original sentence understandable.

The Fundamentals of Mathematics

What do students need to know that they do not now know which would
allow them to truly grasp our terms, theorems, and proofs in algebra, set
theory, and every other mathematical subject area? They first need to
know about truth and falsehood and the five logical connectives. They
need to know a dozen basic logical equivalences and a few tautologies.
They need to know the three basic types of sentences with variables,
especially the concept of generalization and its type of variable, a
placeholder. Then, with this background, they need to know how to-
translate subject-area vocabulary into our language, Mathematics, so that
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the connectives which are so often implicit in mathematical results can be

seen and manipulated. This is not a long list. Furthermore (and this is

important), in addition to being essential to the full understanding of high-

school algebra, it is sufficient for college and graduate-school mathemat-

ics as well. This list contains all the basic language concepts of
mathematics.

Consciousreflection on what one is doing, and why, is an effective part
of learning. Unfortunately, the mathematics curriculum has long been
based on the theory that weaker students should receive a “cookbook”
approach and that only the stronger students can learn the real “why™ of
math. I think this is false and misguided. I concede that, in the current
curriculum, only the stronger students have even half a chance of figuring
out the role of mathematical reasoning in algebra. This awful fact should
be regarded as condemning our approach to teaching reasoning, not as
condemning the “weaker” students. The “weaker” students may actually
be potentially quite good, but unable to read their text, understand their
teacher, or properly express themselves. I have taught a course based on
the premises of this article for four years to many initially “math-anxious™
college students (some of whom were honor students in other areas) who
overcame their anxieties and past failures when they studied the language
and the “why” of it. The results have been dramatic improvements in
skills, concepts, and attitudes (Esty & Teppo, in press).

This article not only points out difficulties students have with numerous
language aspects of Mathematics, it also gives a remedy for each. The
treatment is to change some of the emphasis from doing to understanding
by using effective homework and exam questions which emphasize
understanding. Numerous additional problems can be found in Esty and
Teppo (in press) and especially Esty (1991).

The reasons that Mathematics, the language, has not been taught are
historical. As we all know, the curriculum in any subject area has its own
inertia; the organization of subjects and the emphasis placed on them
changesonly gradually. Geometry was the first mathematical subject area
to be logically organized (long before truth-table logic was developed) so
itis the subject with which reasoning has been taught. Now that logic for
mathematics is so accessible we might expect to approach the teaching of
reasoning through the subject specifically designed to address the prob-
lem, but we do not.

Study of the language has been neglected for another simple reason.
Mathematics is a foreign language. Fluent speakers of any language
hardly notice the difficult constructions that trouble the beginning student.
Word order, conventional usages, abbreviations, negations, and the like
are second nature to college instructors; that is a consequence of years of
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practice. To teach these topics we must first pause and notice that they
exist. Foreign language courses isolate such topics and devote sections to
them. Unfortunately, mathematics textbooks do not devote much space
to the language aspects of mathematics and, therefore, teachers are not
expected to explain them.

These concepts are taught in “foundations of mathematics™ courses,
which have a very small audience of post-calculus pure mathematics
majors. Thus, the study of the language has been omitted from the
curriculum for most mathematics students -- even for those students who
end up teaching math.

T'have found that all the logic necessary and appropriate for mathemat-
ics and all the common patterns of mathematical expression are low-level
and can be organized so that they are easily accessible to general students
(Esty & Teppo, in press). Even math-anxious students can construct and
extract information from truth tables. They can master sentences with
variables. Furthermore, the students like the material because it helps
them understand (not just do) mathematics. Many students -- good
students in other subjects -- crave understanding, but don't get it in the
usual curriculum (Witness the mathematics drop-out rate). Many students
who took my course, “The Language of Mathematics,” as a “last chance”
to satisfy a university-wide mathematics requirement have commented
that they “finally” understood math. “Why didn’t they tell me this in high
school?” is a common plaint.

It is easy to see why those who will continue in mathematics should learn
the language, but what about general high-school students, including those
who will drop out of mathematics? On the one hand, study of the language
shouldhelp them assimilate algebra, so they will be less likely todropout. On
the other hand (and this thought applies to at least half of our students), for
those who will not continue in mathematics, the exposure to pattemns of
mathermnatical expression and reasoning is more valuable than exposure to
many minor and even some major algebraic methods. Everyone uses
whatever reasoning skills he or she possesses every day; only a relatively
small number of people employ the quadratic formula.

Mastery of the language in which mathematics is created is well-known
to be essential for the development of mathematics, but its importance for
the expression and comprehension of mathematical results has been
underestimated. The language in which mathematical results are ex-
pressed, Mathematics, is worthy of study in its own right because it is
fundamental to understanding the rest of mathematics and because it is
accessible to secondary-school students who need the language to read,
write, and think mathematics. It deserves to be integrated into the
curriculum. This should occur as early as possible so that students can
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benefit from improved mathematics literacy from then on. An alternative
would be an entire course devoted to the language of Mathematics.
Whetherornot students and the mathematics curriculum as a whole would
benefit from such a course is an interesting question. I am personally
convinced they would benefit greatly. To improve mathematics literacy
something substantial must change.
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FOOTNOTES

11t is interesting to note that the proof does not need to address the case when
“b = 0", as some algebra texts do. Clearly those texts are covering all bases for
their students who do not know enough logic to know what is sufficient to
constitute a proof. v

*Explicit study of logical equivalences has benefits in unexpected places. For
example, students who do not understand that the contrapositive of a statement is
logically equivalent to the statement will have trouble with statistical reasoning,
which is more subtle than mathematical reasoning. In mathematics, the truth of
“If H, then C” tells us that its contrapositive, “If not C, then not H,” is also true,
so we can then assett that if C is false, sois H. In statistics, we are more likely to
start with “If H, then C happens most of the time,” and ask students to draw
conclusions about H if C does not happen in the particular case being considered.
In statistics courses many college sophomores do not understand the logic of this.
Deductive mathematical logic is simpler and shauld be studied before inductive
statistical logic.
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