- 1. Write out how these should be said aloud so that someone not looking would know what you meant.
- a) $(3x)^2$
- b) f(x) = 2(x+3).
- 2. State the algebraic formulation (symbolically) of the procedure used to evaluate the sum of any two fractions in terms of simpler operations. (Write a method for doing problems like 2/3 + 5/7.)
- 3. Here is a sentence: "3(x + 2) = 3x + 6." What is the subject of that sentence? (Be precise.)
- 4. True or False? If it is true, just say so. If it is false, also give a counterexample. a) T F $(a+2)^2 = a^2 + 4$

a) T F
$$(a+2)^2 = a^2 + 4$$

- b) T F If b > 0 and |c| < |b|, then c < b.
- c) T F If c > 0 and |c| < |b|, then c < b.
- d) T F If |x| < 10, then x < 15.
- e) T F bc = 0 iff b = 0 and c = 0.
- 5. Find
- a) $(-3, 5) \cap [0, 7]$
- b) $(-3, 5) \cup [0, 7]$
- c) (1, 5]°

Prob	Points	Score
1	6	
2	6	
3	4	
4	21	
5	9	
6	5	•
7	6	
8	20	
9	4	**
10	10	
11	10	
12	10	
13	9	
14	10	
15	6	
16	10	
17	6	
18	10	
19	6	
20	12	
21	8	
22	12	
Total	200	

- 6. Give the (preferably sentence-form) definition of set intersection.
- 7. Sketch and shade a Venn diagram (two circles inside a rectangle) for $S \cap T^{c}$.

- 8. Use the Rules in Section 2.3 to solve these equations. In each case you must do it step-by-step, and for each step exhibit the proper connective, and give the justifying reason. [Do NOT use the Quadratic Formula.]
- a) $x^2 + 6 = 5x$

b)
$$\sqrt{2x+13} = x-1$$

9. Is the letter x a placeholder? (Yes or No.)

a)
$$x^2 = c$$

b)
$$(x+1)^2 = 16$$

b)
$$(x+1)^2 = 16$$
 c) $x^2 = c$ iff $x = \pm \sqrt{c}$

d) Let $f(x) = (x + 1)^2$.

10. Let f(x) = 5x + 2. [Use this f for all parts of this problem.]

a) What is the function f that this notation defines?

b) Find simpler g(x) and h(x) such that f(x) = g(h(x)).

$$g(x) = h(x) =$$

c) Find f(f(x)) =

11. Sam invested \$10,000 by dividing it between two investments. The value of one investment doubled. The other one went down to half its original amount. The total was then \$16,250. How much of his \$10,000 was invested in the investment that doubled?

a) Write out all the relevant algebra.

b) Then solve it using algebra.

[Guessing the correct answer is worth little.]

12. Make a complete truth table for "(not A) or B."

13. Here is the form of a conditional " $A \Rightarrow B$." a) Give its contrapositive.
b) Give its converse.
c) Give its negation.
 14. Which of these are logically equivalent to which others of these? [Note: We are not asking if they are true.] Definition: A series which does not converge is said to diverge. a) If a series converges, its terms go to 0.
b) If a series diverges, its terms do not go to 0.
c) If its terms go to zero, a series converges.
d) If its terms do not go to 0, a series diverges.
e) Either its terms go to 0 or a series diverges.
15. Suppose this is false: "For all $x > 5$, $f(x) < 10$." What must be true?
16. a) Define " n is an even number." (Formally, the way it was done in the text.) b) Use the definition to prove, "If n is even, then n^2 is even." [Be sure to cite the justification for each step.]

17. True or false? Explain why. "If x < 10, then there is y such that x < y < 10."

- 18. Definition: p is an interior point of S iff there is some interval (a, b) such that $p \in (a, b) \subset S$. If the answer is "No," just say so. However, if the answer is "Yes," prove it.
- a) Is 3 an interior point of {1, 2, 3, 4, 5}?
- b) Is 3 an interior point of $(0, 3) \cup (3,5)$?
- c) Is 3 an interior point of [1, 5]?
- 19. The <u>Ouadratic Theorem</u>: If $a \ne 0$, the solution to $ax^2 + bx + c = 0$ is given by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Find the solution for x to this equation [Do not bother to multiply out the terms in the Quadratic Formula.] $cx^2 + ax - dx = 3k.$

20. Definitions: b is an upper bound of S iff if $x \in S$ then $x \le b$. b is a bound of S iff $|x| \le b$ for all x in S.

Theorem: Bounds are upper bounds.

- a) Restate the theorem using letters where appropriate.
- b) Fill in a justification for each step in the argument. (Four reasons.)
 "Argument": justification

[Step 1] Let b be a bound of S.

[Step 2] Let $x \in S$.

[Step 3] Then $x \le |x|$

- c) Finish with Step 4 and its reason:
- d) Why is the proof done?

21. Here is an instruction: Given the expression $x^2 + bx + c$, to complete its square give the expression $(x + b/2)^2 - (b/2)^2 + c$.

Read it and use it to complete the square of $x^2 + 5x - 4$.

22. Pick ONE of the two options for a substantial essay. Your essay must make at least five relevant points, and not miss any of the most important points.

Option A: Define and explain placeholders.

Option B: Name and explain the ways that two mathematical sentences can appear different yet say the same thing.