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“We found that kids hit a wall, and that wall is called fourth grade. At that
moment, a kid shifts from learning to read to having to read in order to learn.™
Half of all children never make that transition.2 These sotry thoughts are about
reading English. Imagine how much wotse the statistics would be if we
determined the fraction of kids who can read mathematics to learn mathemat-
ics. This article is about an innovative approach to teaching the language of
mathematics. ,

Recent calls for reform in college mathematics include revitalization of
general-education courses designed for non-mathematics related majors
(Mathematics Association of America, 1989, Sigma Xi, 1989, Steen, 1991).
In spite of the recognition that “all well educated college people should be
mathematically literate,” (Mathematical Association of America, 1989,
p- 109) most cutrent undergraduate offerings to non-majors do little to
effectively meet this goal. One school of thought suggests organizing coutses
around real and engaging problems which can serve to motivate students
(Garfunkel, 1988). This article reports on The Language of Mathematics
(Esty, 1991), a course at Montana State University which takes a different
approach.

This one-term freshman-level course uses a distinctive instructional ap-
proach to study the language of mathematics in order to develop students’
abilities to read with comprehension, to express mathematical thoughts
clearly, to reason logically, to recognize and employ common patterns of
mathematical thought, and to gtasp the nature of proof (Esty, 1992). The
course provides students the opportunity to both communicate about math-
ematics and to use mathematics to communicate, making explicit many of the
recommendations in the NCTM Standards (1989) communication strand. A
qualitative study found that students in this course were able to meet the course
objectives. In addition, students improved their algebraic procedural skills
and dramatically improved their attitudes towards mathematics.

The course discusses both linguistic and logical aspects of the language of
mathematics. For example, the most important and profound linguistic feature
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of the language of mathematics is the concept of a placeholder — a dummy
vatiable. Placeholders are fundamental to abstract symbolic mathematical
expression.

-One well-known use of “x” asa placeholdet is in the definition of a function.
When given the declarative definition “f{x)=x(x+1),” many students cannot
express f{Yx) ot f{x+h) because they do not grasp the concept of a placeholder.

Theorems use placeholders. For example, in the theorem, “| x| <¢ if and
only if -c<x<c, ” the “x” may reptresent “7” or “b” or “5-2x". Theotems are
applied to cases where the letters in the theorem represent, but are not the same -
as, the letters or numbers in the problem. Withouta clear grasp of placeholdets,
students cannot read theorems in textbooks. They are reduced to imitating
their teachers, because they cannot grasp what the declarative sentences in
theorems tell them to do.

The language of mathematics also has features from logic that are fre-
quently misunderstood. For example, many students do not understand the
essential connective if.., then... and how its use differs from the use of if and
only if (equivalence). We, as teachers and authors, have not been clear about
the distinction. Many texts state the additive property of equality using if...,
then...: “If a=b, then a+c=b+c.” This s true, but not precise. The teacher will,
rightly, use the additive property as if it asserted equivalence. Later, when
adding a constant is replaced by squaring (If a=b, then a2=b?), students see the
same connective and expect the same equivalence. Imprecise usage of if..,
then... undermines students’ ability to understand our connectives and read our
texts with comprehension. Students learn the unintended lesson that extrane-
ous solutions can mysteriously appear. Few have any idea that the connective
is the key to the potential appearance of extraneous solutions. Certainly their
textbooks do not make a point of it, and most do not distinguish checking for
mistakes from checking that is requited because the connective was if...,
then....

These ate only two of many examples of linguistic and logical difficulties
students may have with the abstract language of mathematics (Esty, 1992).
Until these and many othet difficulties are explicitly addressed and overcome,
students will not be able to read mathematics to learn mathematics.

In most courses very few homework or test problems address language
difficulties. Traditional mathematics instruction has focused on product rather
than process. Problem answers tend to be numbets resulting from the applica-
tion of procedures rather than the procedures themselves. Many students can
apply procedures, but relatively few can express procedures. For example,
students may be able to solve a particular equation and yet be unable to
generalize their thoughts to explain the solution process. The abstract sym-
bolic language of mathematics is designed for such generalization. It permits
processes to be efficiently described (if the reader is fluent). The Language of
Mathematics course focuses students’ attention on the processes of mathemat-
ics and how they may be expressed.

Nothing illustrates a coutse better than the questions which students are
expected to be able to answet. Here are three questions from exams in the
course which illustrate the emphasis on (a) how mathematics processes are
expressed, (b) placeholdets, and (c) the logical structure of mathematics.
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Question 1. Justification of Processes: Consider the following solution to the
inequality “|7-2x | < 1.”

Solution:|7-2x|<1iff-1<7-2x<1[step 1]
iff -8 < -2x < -6 [step 2]
iff 4 > x > 3 [step 3]

a) State the justification for each step. :
b) Short essay: Is this a proof of something? If so, what? If not, why not?

- Student 14's answer is given next. It contains two minor etrors indicated by
an asterisk (*). Brackets enclose comments to the reader of this article:

a) Stepl)|x|<ciff-c<x <c.
Step2)a<biffac<bc .
Step 3) b < 0 and x < y then bx > by*
[A correct answer: If b < 0, then (x <y iff bx > by)]

b) This seems to be a proof which would assert that | 7-2x | < 1 is equivalent
to the sentence 4 > x > 3 or rather that the solution set to the problem | 7-
2x | < 1isall xs >4 and less than 3*.

Question 2. Symbolic notation: Solve for x (you may use the quadratic
formula written on the chalkboard and rules from Chapter 4): ax + 3x2 = bc.

[written on the chalkboard]: x = -b % ybz - 4ac
2

Correct Response: x = -g + \/az - 4(3)(-bo)
2(3) )

Question 3. Logical Terminology: (Long essay) Discuss “equivalence” of
sentences. Define it and distinguish logical equivalence from equivalence.
Demonstrate that you know at least four types of reasons why sentences may
be equivalent. What is the role of equivalence of sentences in mathematics?

The students’ responses to these questions will be analyzed in the subsection
on conceptual attainment.
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The Course

The coutse is based on the premise that thete ate a limited number of modes
of mathematical expression and thought which pervade all mathematics.
These relate primarily to (a) the use of vatiables, (b) abstraction of methods
into formulas, identities, and theorems, (c) the truth of sentences, and (d)
patterns of mathematical reasoning. Although many articles in the mathemat-
ics education literature have addressed individual cognitive difficulties stu-
dents have with these concepts, we are unawate of any other course accessible
to general-education students which implements a comprehensive program to
overcome all of them.

The coutse begins with a study of the definition of abstraction and discusses
its importance in written mathematics. Basic material is then presented about
numbers, sets, and functions — subject areas chosen to provide mathematical
sentences and paragraphs for further discussion. In addition, these topics
provide familiar contexts with which to begin making certain abstract con-
cepts of the language of mathematics the explicit objects of study. This
material includes initial forays into the uses of variables, logical connectives,
truth, definitions, and replacement. How methods are expressed using formu-
las, identities, and theorems which express impottant patterns is made explicit,
and practice with simple methods is initiated.

Next, truth-table logic is introduced and the basic logical equivalences that
are most often used to provide alternative ways to express the same thought
are examined. In contrast to truth-table logic as taught in some “finite”
mathematics courses, however, the examples used are nearly all mathemati-
cal. This study of logic continues with applications dealing with the truth of
sentences with variables and culminates with a discussion of the different
reasons why two mathematical sentences may appear different yet express the
same meaning.

The next topic focuses on logic for solving equations. A close connection
with proof is established by emphasizing the role of connectives, the reasons
why steps work, and how justifications are expressed. Simple algebraic
equations provide a familiar context for this initial exposure to proof.

An explicit study of proof is presented at the end of the course only after
students have had sufficient exposure to truth, connectives, and justification.
At this time the roles of prior results, tautologies, reorganization, and defini-
tions are thoroughly discussed.

Instructional Structure

Certain aspects of the instructional structure of the course facilitate the
study of the language of mathematics. This structure includes the use of an
algebraic context, an appropriate sequencing of prerequisite concepts, the
connectedness of topics throughout the coutse, an emphasis on language and
communication skills, and the use of examples and homework at an appropri-
ate level of abstraction.

In the course the mathematical abstractions of language, logic, and proof
are studied in the familiar context of algebra. Most of the examples that are
used to illustrate new concepts are drawn from material that the students have

-16-



all seen and employed (although perhaps not fully understood) in previous
classes. There is explicit concentration on the parterns which must be
abstracted from the essential similarities of the examples. The use of algebraic
contexts makes it possible for even those students with weak backgrounds to
study a new level of mathematics. In fact, by looking at familiar topics in a
new, more abstract way these studentsare able to develop a new set of concepts
at the same time that they deepen their understandings of previously encoun-
tered mathematical ideas.,

A second significant feature of the course is the way in which prerequisite
concepts are made explicit and appropriately sequenced to enable students to
develop an understanding of the nature of proof by the end of the course. This
is an important component of successful mathematics instruction, since
“necessary lower-order concepts must be present before the next stage of
abstraction is possible. . . [in order to] present to the learner a possible, and not
an impossible task” (Skemp, 1987, p. 19-20).

A third significant feature of the course structure is that its topics form an
interrelated whole. Initial concepts are repeatedly used to extend mathemati-
cal understanding of subsequent topics. For example, the logical connectives
introduced eatly in the course take on a deeper meaning as they are applied
later to mathematical sentences, and then become an important aspect of the
theory of solving equations and proof. This interrelatedness enables students
to continually improve and deepen their undetstanding of all the material as
the course progresses.

Language plays a crucial role in concept development. “Language is useful
because by the mention of a word parts of a structure can be called up” (van
Hiele, 1986, p. 86). Therefore, a major instructional focus of the course is the
development of appropriate vocabulary, semantic structure, and mathemati-
cal contexts for the language of mathematics.

Many students who are outstanding in other subjects cannot do mathematics
because they do not understand it. These difficulties can be addressed, and
cured, by asking students to consciously reflect on the linguistic and logical
aspects of the language. The context must be the study of the language per se
such that understanding, not a numerical answet, is the goal. Otherwise the
pursuit of “the answer” replaces the quest for comprehension. Classroom
dialogue and the use of extended-answer and essay questions on homework
and tests provide students with examples of the level of conceptual learning
expected of them and give them opportunities to develop facility in using
appropriate mathematical language. Questions are designed to elicit informa-
tion on complex, abstract ideas and mathematical relationships, requiring
students to explain the mathematical meanings implied by procedures, to
provide justifications for these procedures based on mathematical truth, and
to understand precision in mathematical language.

A collection of problems from the course which illustrate the mathematical
context and conceptual emphasis of each of the above topics is given next.

Sample Questions from Homework, Quizzes, and Exams

Bullets (¢) indicate problems. Brackets enclose selected answers and
comments to the readets of this article. Some answers are too obvious and
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thers too long to reproduce here.

Explain the difference between an equation and an identity. [An identity is
an equation which is true for all values of the variable. In identities, equality
isinterpreted liberally, so that if both sides are undefined, they are regarded
as equal. Thus Y(dx)=2/x is an identity, even though both sides ate
undefined for negative values of x.]

What is the usual term for the truth set of an equation? [The solution.]
Explain the difference between a sentence with a variable and a statement.
How do we multiply fractions? a) Exptess your answer in English. [There
are numerous possible answers in the imperative mode: “Multiply straight
across,” is pethaps the shortest, but it is neither precise not clear to students
who do not already know how.] b) Express your answer in mathematical |
notation. [In the declarative mode: (a/b)(¢/d)= (ac)/(bd). The point of this
problem is to have the students learn to express methods by stating facts
using placeholders, rather than always attempting to use English as in part

(a).]

® Resolve the conjecture: x > y = x2 > y2, [False, 2 > -3 but 22 < -32]
* Tosolve|3x + 1| <17 what would you do first? Write your answer in the

imperative mode. [Remove the absolute value signs and put the interior
between -17 and 17.] b) Which theotem says you can do that? [| x | < c iff
-€ <X < c] c) In part a), what do the letters “x” and “c* of the theorem
represent? [x represents 3x + 1, and c represents 17. The point is to have the
students note how concise and precise the mathematical method of expres-
sion is in part (b) compared to the awkward English in part (a).]

Express the following fact using different letters: ab = 0 iffa=0or b = 0.
What notation would a mathematician use to define a function that takes
any given number and adds three to it and then squares the sum?
Suppose each of the following sentences is true. Which express mathemati-
cal facts, and which express facts which depend upon the particular things
represented by the letters? a) 3(x + 5) = 3x + 15, b) 3x = 12, ¢) | x| 2 0, d)
|x|<|x+1],e) (Aand B) = B, f) (4 or B) = B[The context and appearance
of variables is important to understanding. The capital letter “S” might
indicate a set, whereas, in this text, the capital letters “A” and “B” represent
statements in the context of truth tables. (a), (c), and (e) are mathematical
facts.] .

Give the logical form of the sentence: If | x| > 5, thenx > S or x <-5. [A =
(B or C).] Restate the assertion in a logically equivalent form. [(4 and not
B)=C:|x|>5andx<5 = x<-5] ’
[Use DeMotgan's Law to] Give the negation of “-5 <x < 8.” [x< -5 orx 2
8. Thete is an implicit “and” in the original sentence.]

Here is a sentence: “|x- 5| >2 = x > 7.” Give its contrapositive. Give its
negation. Is it true? [Because it is an implicit generalization, its negation
is an existence statement: “There exists x such that |x- 5| >2and x < 7.
Thus the counterexample x = 0 (one of many) proves the negation true and
the original statement false.] ,

True or false? a) be> 25 is equivalent to b > 5 or ¢ > 5; b) b < c is equivalent
tob+d<c+d;c)a=bis equivalent to a2 = b2. [F, T, F].

Give the definition of “upper bound” [(using connectives): & is an upper
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bound of s iff if x € S, then x < b.]

* Why does the section “On Definitions” concentrate on defining open
sentences containing vocabulary words [e.g. “b is an upper ground of 7]
rather than defining just the words themselves? [There are at least three
reasons: 1) A term requites a context which is given by a sentence, 2) logic
applies to sentences, not words, and 3) concept definitions are truth-based,
not just image-based, and open sentences which serve as defining condi-
tions can be true or false.]

* If one equation implies another, how do their solution sets compare? Can
their solution sets be equal? If one has more solutions than the other, which
is it? [The first might have fewer solutions, but all of its solutions will be
found among the solutions to the second. They can be equal.] To solve the
initial equation, would you prefet to have your sequence of equations
connected by “ =" or “iff? Why? [“iff.” It preserves the solutions exactly.]

* What is an “extraneous” solution? [When an initial equation is solved by
using rules correctly to obtain a terminal equation, any solution to the
terminal equation which does not solve the initial equation is called an
extraneous solution. This may occur when the connection “=" is used.]

The instructions for solvirig (simple) equations in Chapter 4, “Logic for

Solving Equations™ are, “In the following homework the solution is not the

only goal. Exhibit every step, exhibit the connective [iff for equivalence,

sometimes “=” is necessary], and cite a rule.” A typical problem ranges from

a factorable quadratic to a harder problem where a squatre root must be

eliminated: x- 1 =yx + 11.

[Extraneous solutions may atise when “=" is used, for example, when

squaring.]

* What is the difference between “prove” and “deduce™? [“Deduce” means
to employ logic properly to obtain a conclusion from given hypotheses.
“Prove” means to employ logic propetly to obtain a result from resuits
already accepted as true. For example, from “Mars is made of green
cheese” we can correctly deduce “Mars is a dairy food,” but the former does
not prove the latter.]

* Suppose “A=B" is true. Discuss whether A “proves” B. [No. Logically,
“3+4 = 7 = the Fundamental Theorem of Calculus” is true, but the
hypothesis does not prove the conclusion. Also, “4 = B” can be true
without “B” being true, because it is an open sentence, For example, “For
all x, x > 5 = x2 > 25,” but this does not prove “x2 > 25” for all x.]

* Determine whether the steps are sufficient to deduce the conclusion. Steps:
H=A.H = B.(A and B) = C. Conclusion: H = C. [They are.]

* a) What is the difference between theorem-proving and equation-solving?
b) When you solve an equation, do you prove anything? If so, what? [Yes,
you prove that the initial equation is equivalent to the terminal equation
which exhibits the solutions.]

* What is a proof?

Conceptual Difficulties

In order to successfully read and write the language of mathematics and
undetstand the nature of proof, it is necessary for students to develop a set of
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related concepts at an appropriate abstract level. Research has documented the
existence of cognitive difficulties that can impede such learning (Balacheff,
1989, Bell, 1976, Dreyfus and Hadas, 1988, Martin and Harel, 1989, Tall,
1991). For example, even math-able students have profound difficulties with
(a) mathematical language and notation, (b) logic (including quantifiers) and
proof techniques, (c) concept definition versus concept image, and (d)
perceptions of the nature of proof (Moore, 1991). In this section we present a
brief discussion of these and other difficulties that are explicitly dealt with in
the coutse to enable students to develop an understanding of the language of
‘mathematics. , ’

Perhaps the most important conceptual change required before students can
become fluent in the language of mathematics and do proofs is the change from
a procedural (imperature — Do this!) mode of thought to a truth-based,
declarative, mode of thought. The declarative mode uses the fact that proofs
are based on true steps justified by reasons, not on procedures. In the coutse
the use of conjectures requires students to explicitly deal with truth and
falsehood, as opposed to methods. This encourages them to take responsibility
for the truth of their own steps whenever problems are to be solved (instead of
having to rely on the instructor for judgement). Students must know and be
able to state results (with vatiables) justifying their work.

Because the language of modern mathematics is designed to express
methods (procedures) in an abstract declarative form (as theorems, identities,
and “properties” using letters [variables] as placeholders), the use of place-
holders and the cotrespondence between methods and statements must be
explicit objects of study. Particular methods setve as examples, but the true
object of study in the course is focused on how methods can be expressed.

The subject of logic is carefully examined in the course. Logic is, by
definition, the study of connectives and quantifiers independent of the
meaning of the component sentences. Thus statement forms (statement
formulas) are the direct object of study, rather than statements. Students focus
on the abstract study of the truth of compound sentences formed using logical
connectives. Furthermore, instruction is designed to make explicit the fact that
the truth of compound statements because of logical form is conceptually quite
different from truth because of meaning.

The study of concept definitions is delayed until students have developed
appropriate prerequisite understandings. Concept definitions employ math-
ematical language as well as connectives and quantifiers from logic in open
sentences, so this area of difficulty cannot be resolved until language and logic
have been addressed. A concept image is derived from examples, but is not
formalized in the abstract manner that a concept definition is (Tall and Vinner,
1981). Therefore, in the course students must first develop an understanding
of the essential components of a concept definition: connectives, logical form,
open sentences, and equivalent sentences.

Both equation-solving and proofs requite logically connected steps. Addi-
tionally, a key conceptual difficulty with proofs is that steps must be justified
by reference to prior results. Once students have developed a thorough
background in connectives and sentences, they are prepared to deal with
paragraphs such as sequences of sentences used to solve equations. Logic for
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equation-solving employing the familiar context of algebra canbe used to help
students become accustomed to the practical use of logical connectives in
paragraphs. By requiring students to justify algebraic steps by explicit
teference to the basic results of algebra, students are given practice in this
difficult requirement of proofs.

Students’ perceptions of proof rely on a grasp of the two primary conceptual
components of proof: (a) tautological form, and (b) prior results (component
steps which are justified by results already accepted as true and which may
include concept definitions). Proof techniques and the organization of proofs
are addressed by theorems (tautologies and logical equivalences) from logic.
Furthermore, proofs often addresslogically rearranged versions of the original
theorem. One explicit object of study of the course is on how logical
equivalences can be used to suggest the proper organization of proofs,
including whete to begin. : .

Without a grasp of all of the components discussed above — language,
truth, the declarative mode, logic, concept definitions, and justification — the
fundamental prerequisites for an understanding of proof are missing. The
explicit study of proof must be deferred until students have acquired these
necessary prerequisite concepts. Therefore, the formal study of proof is
delayed in the course until the students have received a thorough grounding
in the necessary preliminary concepts. This careful sequencing of topics then
makes it possible to successfully teach this difficult area of mathematics,

Course Evaluatioﬁ

Informal reports of the course's effectiveness and popularity in its first three
years prompted a study of the course in its fourth yeat to determine the impact
of the course on the students’ conceptual attainment and their attitudes towards
mathematics. Qualitative, as opposed to quantitative, techniques were se-
lected to enable the study to be exploratory in nature, generating explanations
for observed patterns of behavior rather than testing a set of pre-conceived
hypotheses about classroom learning. Since “teacher-learner-subject matter
interactions . . . must be at the very core of every educational endeavor,”
(Wheeler, 1989, p. 286), this methodology was used to investigate the
* complex triadic instruction-student-subject matter interactions that occurred.

The study was cartied out over the eleven-week duration of the course in
order to investigate the students’ perceptions of themselves as mathematics
leaners and to examine their mathematical performance. Data consisted of
observations of the class lectures, student interviews, students’ written quizzes
and tests, and a content analysis of the course material. The analysis of these
data focused on identifying patterns of behavior and perceptions held by
groups of students rather than on developing descriptions of the class as an
aggregate whole, making it possible tostudy the variations in performanceand
attitudes that occur naturally in any classroom setting. The following sections
present an overview of the analysis of the students’ written work and a
summaty of that part of the analysis of the interviews that examined the
students’ affective responses to the course.
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Even though The Language of Mathematics was designated as a freshman-
level course, the 22 students in the study wer= predominantly upperclassmen
(64% were seniors) and all but one were non-mathematics majors (Table 1).
They were enrolled in the course in order to complete their minimum
mathematics graduation requirement at Montana State University. Many of
the students had weak mathematics backgrounds and had previously taken
developmental mathematics courses at the university (Tables 2 and 3).

Table 1 Table 2

Distribution of students - Distribution of students by

by college class high school math background
2 - Freshmen or Sophomores 2 - general math
5 - Juniors 7 - through geometry
14 - Seniors 9 - through algebra II
1 - grad stu. in math ed 4 - beyond algebra 11

Table 3

Distribution .of students by previous mathematics
courses at Montana State Univers_ity

7 - course equivalent to high school algebra I
5 - course equivalent to high school algebra II
4 - courses beyond algebra II level

Communication, Assessment, and Conceptual Attainment

This section presents a summary analysis of students’ responses to selected
test and quiz questions that were given within the final month of the term. The
purpose of this information is to illustrate the levels of communication stressed
in the course, the nature of the written assessment component, and the kinds
of responses that were obtained from the students.

An important feature of the course was the way in which communication
and assessment were used to promote instruction. Students were constantly
requited to speak and listen to mathematics through regular participation in
class activities: The instructor frequently initiated dialogue by asking each
student in turn to supply answers to questions from the text. This technique,
used in a non-threatening way, provided practice in communicating math-
ematical concepts as well as encouraging the students to come prepared for
class.

The instructor measured the students’ progress informally through class
questioning as well as formally through written quizzes and tests. However,
students were informed that their overall course grade would be based
primatily on their performance near the end of the term. This type of grading
was used because the goal of the course was to develop lorig-term concepts and
language facility (Esty and Teppo, 1992). Such concepts are abstracted from
numerous examples which accumulate over the entire course, and it is
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expected that the students’ language facility will steadily improve with
Ppractice.

From the beginning of the course, students were questioned on abstract
concepts, logical relationships, and criteria for establishing if sentences are
true. Their responses were judged in terms of mathematical correctness,
precision of language (English as well as mathematics) and clarity of expla-
nation. The instructor used the daily homework, class discussions, and early -
quizzes to not only monitor the students’ conceptual development, but to
establish standards of mathematical communication with the students. Feed-
back from this assessment provided the students with information on the
nature of the knowledge that was to be learned in the course, and on the
methods of communication that were to be used to express this knowledge.

The three questions discussed in this section illustrate the type of commii-
nication and level of concept attainment that was expected of the students by
the end of the term. The responses presented indicate the students’ abilities to
express mathematical concepts clearly in English, use mathematical terminol-
ogy appropriately, and use symbolic notation to express logical and math-
ematical relationships. The selected questions address the mathematical
concepts of equivalence, the theory of solving equations, and the use of
patterns and variables.

Concept Development

Essay questions were used to measure concept development. One example
is question number 3 stated in the introduction, This question, given on the
final exam, measures the students’ abilitiesto distinguish between equivalence
and logical equivalence (in terms of concepts, relationships, and uses), to use
appropriate terminology, and to express their thoughts clearly in an extended
essay. v

The students’ answers were analyzed on the basis of completeness of
response, use of proper mathematical terminology, inclusion of four reasons
(with examples) why things may be equivalent, and absence of errors. Nine
students provided answers that were considered to be adequate to good, with
scores ranging from 17 to 23 out of a possible 25 points. Twelve other students
wrote less acceptable responses that included many errors or omissions, with
scores ranging from 10 to 18.

The following two examples, written by Shane and Walter (pseudonyms),
illustrate the range in answers that were written by students for this final exam
question. Both are given verbatim to indicate the depth of response that was
elicited by the question. Parentheses within the answer were part of the
student’s essay. Errors or vague assertions made by the students are indicated
by an asterisk (*) and brackets enclose comments to the reader of this article.

- Shane (student #22). Score, 23/25:
Equivalence is apparent when the truth sets of two sentences are equal.
Equivalent sentences may be substituted for one another and the outcome
will be the same. Equivalence deals with sentences and logical equivalence
deals with sentences using logical connectives. Equivalence is used in the
context of sentences in which a more understandable or usable form makes
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progression of steps in the solving of a sentence mote appatent or easier to
visualize. Logical equivalence is used in the context of sentences which
could be used in another form to make a progtession of steps, as in a
“proof,” more easily understandable and also, sometimes, the “proof™ can
be made mote concise and without unnecessary intermediate steps when
logically equivalent forms are used propetly. Four teasons things may be
equivalent are: 1) theorems: A or (not A) is a tautology, x € Sorx ¢ Sis
a tautology; 2) definitions: The negation of A = B is A A (not B); the
negation of C = D is C A not D,* [This is not an example of a definition.
“S C T'is equivalent to ‘All members of S are in T™ would be a definition
of “subset.”]; 3) logical equivalences: E = Fis logically equivalent to (not
E) or F, and 4) quantified variables: 3 P 3 P2- 10 = (P+100)/P3,3c 3 c?-
10 = (c+100)/c3. Equivalence plays the important role of allowing substi-
tution of equivalent sentences which will make finding solutions of
sentences more concise and much easier to follow from subsequent steps.
Logical equivalence does this as well when logic is employed as in the
context of proofs and truth tables.

-- Walter (student #9). Score, 13/25:

. Things that are equivalent often have the same truth values. Equivalence
is important because it is a way to find solutions that otherwise might not
have been possible. Things may be equivalent because of 1) Definitions,
2) logical equivalences, 3) Quantitative* [quantified] Variables, 4) Theo-
rems. The role logical equivalences take in mathematics is that it lets us see
the same thing in a different way and lets us find a solution by using
different connectives and rules and theorems.

These two student answers illustrate the variation in mathematical content
and terminology that students were able to produce in answering this question.
As can be seen by Shane’s lengthy response, the essay format provided an
appropriate vehicle for assessing the degree of completeness of his develop-
ment of a very complex concept. This question also demonstrated the students’
abilities to communicate mathematical information in writing. Sixteen stu-
dents (75%) used between three quarters and one full page of paper (8!/2 by 11
inches) to write their answer. Only five students (23%) used a half a page or
less. Most students wrote in complete sentences in paragraph form rather than
simply listing the required information.

Symbolic Notation

Question number 1 cited in the introduction (in which students were asked
to express methods for solving inequalities) provides an example of the way
in which assessment was focused on measuring students’ understanding of
process and methods of expressing processes rather than on measuring
competence with symbolic manipulation. This question examines the stu-
dents’ understanding of the theory of solving equations, their knowledge of
specific theorems related to the manipulation of inequalities, and their ability
to express this information in appropriate mathematical notation. This ques-
tion also tests their understanding of proof in application. ,
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The students’ answers wete analyzed in terms of the numbers and kinds of
errors made. Seven students made one or two minor etrors with scores ranging
from 16 to 19 out of a possible 20 points. Six students made two substantial
errors with scores from 11 to 14 points. Seven students made three substantial
ertots with scores from 10 to 12 points. The remaining two students did not
answer two of the four patts and received scores of 8 and 7.

Most of the students used algebraic symbols to state the theorem in each part
of the question. A few gave the name of the theorem and described its
propettiesin words. All students realized that some form of logical connective
was employed in writing down the algebraic manipulations in each step of the
solution process. :

Question number 2 cited in the introduction (on the quadratic formula)
examines the students’ ability to recognize a mathematical pattern exptessed
in variable notation and to make appropriate substitutions within this pattern.
Ten students answered the problem correctly. Seven students did not put the
original equation in standard form and consequently failed to associate a
negative sign with “be.” The remaining four students wete not able to identify
the appropriate values for substitution, assigning values to “a,” “b,” and “c”
on the basis of the position of each term from left to right in the original
equation.

This problem measured one aspect of the students’ abilities to assi gn
appropriate mathematical meaning to collections of algebraic symbols. This
question represented a type of pattern recognition and substitution that many
students found difficult to master early in the course. When a similar quadratic
equation (2cx+bx2-5=0) was given to the students at the end of the 7th week
of classes, 56% of the students assigned values based on physical position of
terms in the original equation. At the end of the term, however, only 19% of
the students were still unable to assign values based on mathematical relation-
ships instead of physical location.

The questions presented in the introduction and analyzed in this section
illustrate the ways in which conceptual understanding was assessed in the
course using quizzes and tests and the level of conceptual attainment that was
expected in the course. Questions are designed to elicit information on
complex, abstract ideas, mathematical relationships, and an understanding of
~ the precision of mathematical language. Most questions ate not procedural
(that is, they do not just ask questions to do procedures), but are genuinely
conceptual. Students are asked to explain the mathematical meanings implied
by procedures and to provide justifications for these procedures based on
mathematical truth. Within the eleven-week term, most students were able to
develop an understanding of, if not necessarily a fluency with, abstract
mathematical structure and reasoning. They were also able to communicate
this understanding competently in English as well as in mathematics. In
addition, many students improved their algebraic skills, because one result of
studying the logic for solving equations was that it enabled the students to
understand the mathematical reasons behind the equation-solving procedures
that many had previously regarded as sequences of meaningless steps. This
understanding enabled the students to solve equations with confidence,
develop facility in factoting quadratic equations, and produced intense feel-
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ings of satisfaction.

Affective Responses .

This section examines the impact of the course on the students’ mathemati-
cal attitudes and beliefs through an inductive analysis of the transcriptions of
the student interviews. An emergent constructivist framework within psychol- .
ogy regards individuals as meaning-seeking beings who create their own
representational models of the world. These models in turn become the
foundation upon which individuals assign meaning to new experiences
(Mahoney and Lyddon, 1988). Accotding to Noddings (1990), this framework
implies that research must “investigate the subjects’ perceptions, purposes,
premises, and ways of working things out if we are going to undetstand their
behavior” (p. 14-15).

Using this framework, the interview was selected as an appropriate method
of data collection for studying the students’ perceptions of themselves in a
mathematical environment (Goetz and LaCompte, 1984). Many of the stu-
dents were eager to share theit feelings of anxiety, anger, and frustration over
their past and present mathematics experiences once they discovered that the
researcher was genuinely interested in listening to them. As the students’
feelings changed throughout the coutse, the interviews provided the students
with opportunities to continue to discuss their altering self-perceptions.

The students were individually interviewed approximately every three
weeks during the course. All students were interviewed as least twice, some
as many as four times. The students wete informed that information from these
interviews would not be shared with the course instructor until after the class
was finished and that all their comments would remain anonymous. All
interviews were tape recorded and transcribed for later analysis.

The particular questions used in each round were selected prior to the
beginning of each set of interviews and were based on students’ previous
responses, instructional issues occurring at that time in the course, and
suggested issues raised by the instructor. Interviews were semi-structured, but
open-ended, using a set of initial questions for all students.

Following the completion of the course, the students’ comments were
analyzed by comparing and contrasting particular statements to identify
patterns of responses that were shated by groups of students or that occurred
as a function of time. Patterns were then charactetized through descriptions of
their common traits. The results of this analysis led to the identification of
subjective dimensions of mathematics learning that represent one possible
interpretation of the students’ self-perceptions of their experiences and feel-
ings in relation to the class.

The dimensions are labeled attitude and matheimatics involvement, and -
mathematical self-confidence. These dimensions, which cover both affective
and metacognitive behavior, do not describe discrete states but represent areas
of mutual influence, with overlapping traits. They are organized as separate
dimensions to provide differing perspectives on the complex interaction of
affect and cognition within the mathematics learning environment.
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Attitude and Mathematics Involvement

The dimension of attitude and mathematics involvement was used to
characterize the students’ affective interactions with mathematics and with the
class activities. Seven categories were developed by comparing and contrast-
ing the types of statements made by the students at the beginning and end of
the course, differentiating in terms of the degtee of positiveness ot negative-
ness of each statement. In the most negative category students expressed high
levels of anxiety and indicated a strong avoidance of mathematical participa-
tion. At the other extreme students expressed a marked enjoyment of math-
ematics and indicated a strong involvement in mathematical activity. The
seven categoties that were developed and their classification criteria are as
follows:

1. High Anxiety and Mathematics avoidance: Students expressed debili-
tating emotional reactions to mathematics or the class situation.

2. Moderate Anxiety and Mathematics Avoidance: Students expressed
moderately debilitating emotional reactions to mathematics and/or
described avoidance behaviors.

3. Dislike of Mathematics: Students expressed dislike of mathematics but
gave little indication of avoidance behavior.

4. Indifference: Students expressed mild dislike or neutral feelings about
mathematics.

5. Slight Enjoyment of Mathematics: Students exptressed mild enjoyment
of mathematics. '

6. Moderate enjoyment and Mathematics Involvement: Students indicated
that they were comfortable with doing mathematics, had a sense of
understanding, and experienced moderate enjoyment of mathematics.

7. Enjoyment and Enthusiastic Mathematics Involvement: Students ex-
pressed enjoyment and confidence in doing mathematics, a feeling of
understanding, and strong positive reactions to the subject.

Table 4 indicates the change in attitude and involvement and final course
grade for each student. ' .

During the coutse the students, overall, exhibited a marked improvement in
attitude towards and involvement in mathematics. At the beginning of the
class 50% of the students had either high or moderate anxiety. With the
exception of the mathematics education graduate student, at the beginning the
most positive attitude toward mathematics was one of indifference (expressed
by 23% of the students). In contrast, by the end of the course indifference
represented the most negative attitude (held by 23% of the students). At the
end, 38% were classified in the most positive category, and 64 % of the students
were classified in the two most positive categories.

On an individual basis all but five of the 22 students exhibited an improve-
ment in their feelings towards the subject. Four of these five were classified
as indifferent both at the beginning and at the end of the course (and the fifth
was the mathematics education graduate student who was already in the top
category at the beginning). All but two of the 11 students in the two most
negative categories (#1, #2) at the beginning of the course moved up into the
top two categories (#6, #7) by the end of the class.
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: Table 4
Individuals student's final course grade
and changes in attitude and involvement

Category of Response
Student Grade 1 2 3 4 . 5 7

1 C .0
2 B B
3 c 0 X
4 B 0 X
5 B 0----- X
6 B |
7 A ]
8 A 0 X
9 D |
10 c 0 X
11 c 0 X
12 A 0 : X
13 A 0 X
14 c 0 X
15 c 0 X
16 A [ ]
17 c 0 X
18 A 0 X
19 c 0-——=——- X
20 C 0-————————- X
21 C 0 X
22 A 0 X .

0 = Initial category at beginning of class
X = Final category at end of class

1 = High math or performance anxiety and math avoidance
2 = Moderate mathematics anxiety and avoidance

3 = Dislike of math

4 = Indifference

§ = Slight enjoyment of mathematics

6 = Moderate enjoyment and math involvement

7 = High enjoyment and math involvement

The following comments illustrate the types of changes that students
experienced by the end of the course. "

Beginning: “I wouldn't be here if I didn't have to. I'm frustrated, angry,
hating it. I get real tense all the time.” (Alice - category #1.)

End: “I'm doing way, way better than I thought I ever would. I think if
I ever did take math again I could do better than I did before. I think I
can probably understand it better.” (Alice - category #6.)
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Beginning: “I usually dread studying math. When I took another math
class I forced myself to sit down and study. I hated every minute of it.”
(Andy - category #3.)

End: “I'm enjoying this math class more than I've ever enjoyed a math
class before. I'm studying. I'm not dreading sitting down to do my
homework. I'm doing it every day and I look forward to doing it.” (Andy
- category #7.)

Mathematical Self-Confidence

The dimension of mathematical self-confidence describes an individual
student’s perceptions of his or her ability to successfully petform mathematical
tasks. This dimension combines a metacognitive element related to students’
petceptions of learning with an affective trait of self-confidence. The charac-
teristics of this dimension were developed from the interview transcripts by
classifying statements as either “confident” or “non-confident” and sub-
dividing these two categoties along common traits.

The traits do not represent an ordeting of perceptions from negative to
positive. Instead, they should be regarded as parallel characteristics describing
different aspects of the students’ perceptions. Many of these characteristics
share attributes classified under the dimension “mathematics involvement.”
Descriptions of these traits are given below. The number of different students
whomade suchstatements at some point in the course are given in parentheses.

-- Non-Confident

L. Inaccessibility of Mathematics (8): Students indicated that forces beyond
their control impeded their ability to do mathematics. They also per-
ceived mathematical activities and learning to be meaningless.

2. Lack of Accomplishment (10): Students indicated that they perceived few
positive results despite working hard. They also indicated they lacked
specific skills and knowledge.

--Confident

3. Accomplishment (15): Students indicated that they could perform spe-
cific mathematical activities and commented that, by working hard, they
were able to succeed.

4. Confidence (14): Students expressed feelings of confidence over their
performance in the class and commented on how motivated they wete to
do mathematics.

5. Understanding (16): Students commented on their ability to understand
the coutse material.

Many students’ perceptions of their mathematical confidence changed from
the beginning to the end of the course. During the early patt of the course 14
students (64 %) characterized themselves as mathematically non-competent to
some degree based on their expetiences in previous mathematics classes or on
their early performances in the class. By the final interview, however, all
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students had at some point in the coutse used statements of self-confidence to
describe their present behavior. Only one student was still referring to himself
in non-confident terms by the final interview (Table 5).

Note that the interview process was designed to elicit the concerns and
beliefs of individual students, not to prompt them to confirm or deny the
interviewet’s preconceptions. Not all students expressed the same concetns
when responding to the initial, pre-selected questions, so the follow-up
questions did not always touch on all the concetns later identified as signifi-
cant. Therefore, blanks occasionally occur in the descriptive tables of student
responses (see Table 5).

Table 5
Students’ perceived mathematical
competencies as a function of time

Previous Interviews
Student .Math 1 11 IIT 1V
1 0 X X X
2 - X X
3 - 0 X
4 0 X X X
5 - X X
6 - X X
7 X
8 0 - X X X
9 - - X
10 0 X X
11 0 0 0
12 0 0 0 X
13 0 X -] 8
14 0 - - X
15 0 - 0 X X
16 X
17 0 0 X X X
18 0 X X X
19 0 - X X
20 - X - X
21 X X
22 0 - X X
- = Not interviewed
0 = Non-competent
X = Competent
blank = Not discussed
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Eight of the 22 students (36%) did not show a marked change in their self-
perceptions throughout the course, making only confident statements when
interviewed. These eight students represented all those classified at the end of
the course as indifferent or expressing only slight enjoyment of mathematics.
These students, who already felt comfortable with their mathematical perfor-
mances at the beginning of the class, did not change much during the course
along the subjective dimensions of learning that were analyzed. It is argued
that the unanticipated success in the course of the 13 students with initially low
levels of mathematical confidence contributed to those students’ marked
improvements in attitudes towards and involvement in mathematics (Teppo,
1992).

The following comments illustrate the nature of two students’ mathematical
self-confidence and the way that this changed from the beginning to the end
of the class.

Doug (#15):

- Second interview - “To do math - theres got to be something up there.
There's somethmg innate in there. For five years I've been thinking - how
am I going to be able to do math?” (Non-confident.)

- Fourth interview - “Working this hard, I've proved to myself that Icando
whatever I want, I can do anything. I've learned from this class that it's not
what you cannot do, it’s what you can do.” (Confident.)

Doug’s statements illustrate a dramatic shift in locus of control. At the
beginning of the coutse, he indicated that mathematical ability was innate and,
by inference, beyond him. At the end of the course, he connected his success
in the class to hard work. During the final interview, Doug expressed great
confidence in himself and motivation to petform well in the few remaining
weeks of the class. These perceptions of his mathematical competence parallel
his beginning and end classifications on the dimension of attitude and
involvement (#1 to #7).

Mary (#6):

- Second interview - “The text is clear enough that the homework problems
are clear.” (Confident.)

- Fourth interview - “I haven't been challenged with anything different. I
don't find the class difficult.” (Confident.)

- Mary was classified as indifferent in her attitudes and involvement both at

the beginning and the end of the class. The fact that Mary’s performance
matched her expectations produced far less affective impact on her than did
Doug's reversal of classroom expectations.

Discussion
Research dealing with attitudes, beliefs, and emotions in mathematics

education has recently been focused on examining these factors in problem-
solving situations either within clinical interview settings or within small
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group classroom interactions (McLeod and Adams, 1989). These studies seek
to understand the roles that affective variables play in students’ abilities to
solve mathematical problems. This study takes another perspective, examin-
ing attitudes and beliefs within the context of actual classroom mathematics
instruction to develop characterizations of the types of attitudes and beliefs
that occur because of mathematics learning.

The identification and characterization of the subjective dimensions of
learning illustrate the complex, interactive nature of students’ petceptions of
themselves as mathematics learners, their beliefs about mathematics, and their
affective reactions to the subject. The mutual influence of these variables
indicates the importance of regarding mathematics leamning as a set of
complex, interrelated cognitive and affective factors (Lester, Garofalo, and
Kroll, 1989).

This study found that students’ increased confidence in their abilities to do

" mathematics was linked to an increased enjoyment and active participation in
mathematical activities. At thesame time, students’increasesin understanding
and valuation of the subject were related to increased confidence. These
positive attitudes were reflected in decreases in the levels of students’
mathematics anxiety.

These findings indicate that the course exerted a positive affective impact
on many of the students. Dramatic shifts occurred within a limited instruc- )
tional time in their attitudes towards and involvement in mathematics, their
levels of self-confidence, and their beliefs about mathematics. A comparison
of the changes in attitudes and beliefs of the “indifferent” students with those
actively involved in the course by the end of the class indicates that the
unanticipated success in mathematics experienced by many of the students
may have been a powerful factor in altering their attitudes towards and
involvement in mathematics.

Undoubtedly, the classtoom atmosphere, instructor's dynamic teaching
style, and the use of a progressive improvement grading scheme played a
major role in reducing the students’initial levels of mathematics anxiety. What
isintetesting is that these students were also actively engaged in the particular
subject matter. Students responded positively because they wete able to
understand the course material. It was not necessary for the content to be
directly applicable to their daily lives or to consist of realistic and “fun”
application problems. The mathematics itself became a motivating factor for
class participation and learning.

The findings reported in this section substantiate the impottance of consid-
ering the affective aspects of classroom mathematics instruction. Motivation
to persevere and an awakened enthusiasm for the subject ate student traits that
have profound impact on increasing enrollment in mathematics programs.
One of the goals of “Challenges for College Mathematics™ (MAA and AAC,
1990, pp. 15-16) is stated specifically in affective terms: “Building students’
well-founded self-confidence should be a ‘major priority for all collegiate
mathematics instruction.”
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Conclusion

Traditionally, mathematics instruction has been focused on product rather
than process. These products, howevet, are only the final step in a long chain
of thinking and reasoning; a chain of understanding and concept development
that is omitted from much mathematics instruction. Students “have been
taught the products of the activity of scores of mathematicians in their final
form, but they have not gained insight into the processes that have led
mathematicians to create these products” (Dreyfus, 1991, p. 28). Students are
givenalanguage, symbol system, and mathematical structure, but not the keys
tounlock their meanings. “A language must be created: symbols defined, rules
of manipulation specified, the scope of mathematical operations delineated”
(Hanna, 1991, p. 60). The Language of Mathematics course addresses these
issues. :

The findings about the course based on the analyses of the students’ written
work and interviews are significant because they demonstrate that it is possible
to develop a course that systematically teaches abstract concepts of math-
ematical expression and reasoning. Furthermore, this type of instruction is
readily accessible to so-called “weak” students and has been shown to have a
positive affective impact on them. The Language of Mathematics course is
unique in that it comprehensively addresses areas of cognitive difficulty
related to the linguistic and logical structure of mathematics. We argue that the
focus and sequencing of the course content and instructional emphasis, the
levels of mathematical understanding developed by the students, and the
attitudinal changes they experienced ate all intetrelated factors contributing
to the success of the course.

An important factor is that the course emphasizes understanding, not just
“doing.” Mathematics is demystified as the students begin to understand its
logical structure and observe the ways in which this structure operates in the
theory of solving equations. A soutce of satisfaction for many of the students
in the study was the fact that, under this type of carefully structured learning,
they were able to truly undetstand mathematics for the first time.

The course content was originally designed to address the cognitive
difficulties “good” college-level students have with mathematical reasoning
and proof, but, apparently, these difficulties are largely the same difficulties
that “weak” students have. Of course, the so-called “weak” students have
additional difficulties at a less abstract level, the procedural level, but this does
not appear to be a disabling handicap when studying this material. When
approached as in The Language of Mathematics, these topics, which tradition-
ally have been offered only to math-able students, also comprise an effective
course for math-anxious, math-avoidant individuals who are traditionally
neglected in the service population of collegiate mathematics instruction.

We conclude that mathematical logic and fundamental concepts of math-
ematical expression and structure need not be considered as esoteric topics
testricted to upper-level college classes. It is possible to develop a rigorous
course that attends to the linguistic and logical aspects of mathematics that is
accessible to a wide range of students. The course content is fundamental to
mathematics and applicable to all mathematics courses.
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NOTES

! Children's Television Workshop President David Britt, quoted by Miriam Horn in
“Can the Boob Tube Finally Get Serious?” in U.S. News and World Report, August
24, 1992, page 61.

2 According to a Harvard professor of human development, Colette Daiute, cited in the
article in note 1.
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